American Association Of Clinical Endocrinologists And American College Of Endocrinology 2016 Outpatient Glucose Monitoring Consensus Statement

      ABSTRACT

      Abbreviations:
      A1C = glycated hemoglobin
      AGP = ambulatory glucose profile
      ARD = absolute relative difference
      BGM = blood glucose monitoring
      CGM = continuous glucose monitoring
      CMS = Centers for Medicare and Medicaid Services
      CSII = continuous subcutaneous insulin infusion
      CV = coefficient of variation
      DCCT = Diabetes Control and Complications Trial
      DirecNet = Diabetes Research in Children Network
      FDA = US Food & Drug Administration
      GDM = gestational diabetes mellitus
      GM = glucose monitoring
      IDF = International Diabetes Federation
      ISO = International Organization for Standardization
      MARD = mean absolute relative difference
      MDI = multiple daily injections
      MedARD = median absolute relative difference
      MNT = medical nutrition therapy
      SAP = sensor-augmented pump
      T1DM = type 1 diabetes mellitus
      T2DM = type 2 diabetes mellitus
      To read this article in full you will need to make a payment
      AACE Member Login
      AACE Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Blevins T.C.
        • Bode B.W.
        • Garg S.K.
        • et al.
        Statement by the American Association of Clinical Endocrinologists Consensus Panel on continuous glucose monitoring.
        Endocr Pract. 2010; 16 (Available at:): 730-745
        • American Diabetes Association
        Standards of Medical Care in Diabetes - 2015.
        Diabetes Care. 2015; 38: S1-S94
        • Battelino T.
        • Conget I.
        • Olsen B.
        • et al.
        The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial.
        Diabetologia. 2012; 55: 3155-3162
        • Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group
        • et al.
        Factors predictive of use and of benefit from continuous glucose monitoring in type 1 diabetes.
        Diabetes Care. 2009; 32: 1947-1953
        • Bode B.W.
        • Tamborlane W.V.
        • Davidson P.C.
        Insulin pump therapy in the 21st century. Strategies for successful use in adults, adolescents, and children with diabetes.
        Postgrad Med. 2002; 111: 69-77
        • Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group
        • et al.
        Continuous glucose monitoring and intensive treatment of type 1 diabetes.
        N Engl J Med. 2008; 359: 1464-1476
        • Franciosi M.
        • Lucisano G.
        • Pellegrini F.
        • et al.
        ROSES: Role of self-monitoring of blood glucose and intensive education in patients with type 2 diabetes not receiving insulin. A pilot randomized clinical trial.
        Diabet Med. 2011; 28: 789-796
        • Khamseh M.E.
        • Ansari M.
        • Malek M.
        • Shafiee G.
        • Baradaran H.
        Effects of a structured self-monitoring of blood glucose method on patient self-management behavior and metabolic outcomes in type 2 diabetes mellitus.
        J Diabetes Sci Technol. 2011; 5: 388-393
        • Polonsky W.H.
        • Fisher L.
        • Schikman C.H.
        • et al.
        Structured self-monitoring of blood glucose significantly reduces A1C levels in poorly controlled, noninsulin-treated type 2 diabetes: results from the Structured Testing Program Study.
        Diabetes Care. 2011; 34: 262-267
        • Durán A.
        • Martín P.
        • Runkle I.
        • et al.
        Benefits of self-monitoring blood glucose in the management of new-onset type 2 diabetes mellitus: The St Carlos Study, a prospective randomized clinic-based interventional study with parallel groups.
        J Diabetes. 2010; 2: 203-211
        • Barnett A.H.
        • Krentz A.J.
        • Strojek K.
        • et al.
        The efficacy of self-monitoring of blood glucose in the management of patients with type 2 diabetes treated with a gliclazide modified release-based regimen. A multicentre, randomized, parallel-group, 6-month evaluation (DINAMIC 1 study).
        Diabetes Obes Metab. 2008; 10: 1239-1247
        • Martin S.
        • Schneider B.
        • Heinemann L.
        • et al.
        Self-monitoring of blood glucose in type 2 diabetes and long-term outcome: an epidemiological cohort study.
        Diabetologia. 2006; 49: 271-278
        • Skyler J.S.
        • Skyler D.L.
        • Seigler D.E.
        • O'Sullivan M.J.
        Algorithms for adjustment of insulin dosage by patients who monitor blood glucose.
        Diabetes Care. 1981; 4: 311-318
        • Walsh J.
        • Roberts R.
        • Chandrasekhar V.
        • Bailey T.
        Using Insulin: Everything You Need to Know For Success with Insulin.
        Torrey Pines Press, San Diego, CA2003
        • Clarke S.F.
        • Foster J.R.
        A history of blood glucose meters and their role in self-monitoring of diabetes mellitus.
        Br J Biomed Sci. 2012; 69: 83-93
        • Goldstein D.E.
        • Little R.R.
        • Lorenz R.A.
        • et al.
        Tests of glycemia in diabetes.
        Diabetes Care. 2004; 27: 1761-1773
        • Howe-Davies S.
        • Holman R.R.
        • Phillips M.
        • Turner R.C.
        Home blood sampling for plasma glucose assay in control of diabetes.
        Br Med J. 1978; 2: 596-598
        • Sönksen P.H.
        • Judd S.L.
        • Lowy C.
        Home monitoring of blood-glucose. Method for improving diabetic control.
        Lancet. 1978; 1: 729-732
        • Danowski T.S.
        • Sunder J.H.
        Jet injection of insulin during self-monitoring of blood glucose.
        Diabetes Care. 1978; 1: 27-33
        • Walford S.
        • Gale E.A.
        • Allison S.P.
        • Tattersall R.B.
        Self-monitoring of blood-glucose. Improvement of diabetic control.
        Lancet. 1978; 1: 732-735
        • Skyler J.S.
        • Lasky I.A.
        • Skyler D.L.
        • Robertson E.G.
        • Mintz D.H.
        Home blood glucose monitoring as an aid in diabetes management.
        Diabetes Care. 1978; 1: 150-157
        • Peterson C.M.
        • Jones R.L.
        • Dupuis A.
        • Levine B.S.
        • Bernstein R.
        • O'Shea M.
        Feasibility of improved blood glucose control in patients with insulin-dependent diabetes mellitus.
        Diabetes Care. 1979; 2: 329-335
        • Ikeda Y.
        • Tajima N.
        • Minami N.
        • Ide Y.
        • Yokoyama J.
        • Abe M.
        Pilot study of self-measurement of blood glucose using the Dextrostix-Eyetone system for juvenile-onset diabetes.
        Diabetologia. 1978; 15: 91-93
      1. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group.
        N Engl J Med. 1993; 329: 977-986
        • de Veciana M.
        • Major C.A.
        • Morgan M.A.
        • et al.
        Postprandial versus preprandial blood glucose monitoring in women with gestational diabetes mellitus requiring insulin therapy.
        N Engl J Med. 1995; 333: 1237-1241
        • Kaufman F.R.
        • Gibson L.C.
        • Halvorson M.
        • Carpenter S.
        • Fisher L.K.
        • Pitukcheewanont P.
        A pilot study of the continuous glucose monitoring system: clinical decisions and glycemic control after its use in pediatric type 1 diabetic subjects.
        Diabetes Care. 2001; 24: 2030-2034
        • Hirsch I.B.
        • Farkas-Hirsch R.
        • Skyler J.S.
        Intensive insulin therapy for treatment of type I diabetes.
        Diabetes Care. 1990; 13: 1265-1283
      2. International Diabetes Federation. IDF Guideline on Self-monitoring of Blood Glucose in Non-insulin Treated Type 2 Diabetes. 2009. Available at: http://www.idf.org/guidelines/self-monitoring.

        • Karter A.J.
        • Parker M.M.
        • Moffet H.H.
        • et al.
        Longitudinal study of new and prevalent use of self-monitoring of blood glucose.
        Diabetes Care. 2006; 29: 1757-1763
        • SMBG Study Group
        Meal-related structured self-monitoring of blood glucose: effect on diabetes control in non-insulin-treated type 2 diabetic patients.
        Diabetes Care. 2002; 25: 1928-1932
        • Inzucchi S.E.
        • Bergenstal R.M.
        • Buse J.B.
        • et al.
        Management of hyperglycemia in type 2 diabetes: a patient-centered approach: Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).
        Diabetes Care. 2012; 35: 1364-1379
        • ESMON study group
        Efficacy of self monitoring of blood glucose in patients with newly diagnosed type 2 diabetes (ESMON study): randomised controlled trial.
        BMJ. 2008; 336: 1174-1177
        • Farmer A.
        • Wade A.
        • Goyder E.
        • et al.
        Impact of self monitoring of blood glucose in the management of patients with non-insulin treated diabetes: open parallel group randomised trial.
        BMJ. 2007; 335: 132
        • Davidson M.B.
        • Castellanos M.
        • Kain D.
        • Duran P.
        The effect of self monitoring of blood glucose concentrations on glycated hemoglobin levels in diabetic patients not taking insulin: a blinded, randomized trial.
        Am J Med. 2005; 118: 422-425
        • Malanda U.L.
        • Welschen L.M.
        • Riphagen I.I.
        • Dekker J.M.
        • Nijpels G.
        • Bot S.D.
        Self-monitoring of blood glucose in patients with type 2 diabetes mellitus who are not using insulin.
        Cochrane Database Syst Rev. 2012; 1: CD005060
        • Chitayat L.
        • Zisser H.
        • Jovanovic L.
        Continuous glucose monitoring during pregnancy.
        Diabetes Technol Ther. 2009; 11: S105-S111
        • Potts R.O.
        • Tamada J.A.
        • Tierney M.J.
        Glucose monitoring by reverse iontophoresis.
        Diabetes Metab Res Rev. 2002; 18: S49-S53
      3. IsaacsL.What Happened to the GlucoWatch Biographer?Available at: http://www.diabetesmonitor.com/glucose-meters/what-happened-to-the-glucowatch.htm.

        • Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group
        • et al.
        The effect of continuous glucose monitoring in well-controlled type 1 diabetes.
        Diabetes Care. 2009; 32: 1378-1383
        • Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group
        • et al.
        Sustained benefit of continuous glucose monitoring on A1C, glucose profiles, and hypoglycemia in adults with type 1 diabetes.
        Diabetes Care. 2009; 32: 2047-2049
        • Kordonouri O.
        • Pankowska E.
        • Rami B.
        • et al.
        Sensor-augmented pump therapy from the diagnosis of childhood type 1 diabetes: results of the Paediatric Onset Study (ONSET) after 12 months of treatment.
        Diabetologia. 2010; 53: 2487-2495
        • Mauras N.
        • Beck R.
        • Xing D.
        • et al.
        A randomized clinical trial to assess the efficacy and safety of real-time continuous glucose monitoring in the management of type 1 diabetes in young children aged 4 to <10 years.
        Diabetes Care. 2012; 35: 204-210
        • Seaquist E.R.
        • Anderson J.
        • Childs B.
        • et al.
        Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and the Endocrine Society.
        Diabetes Care. 2013; 36: 1384-1395
        • Klonoff D.C.
        • Buckingham B.
        • Christiansen J.S.
        • et al.
        Continuous glucose monitoring: an Endocrine Society Clinical Practice Guideline.
        J Clin Endocrinol Metab. 2011; 96: 2968-2979
        • Yeh H.C.
        • Brown T.T.
        • Maruthur N.
        • et al.
        Comparative effectiveness and safety of methods of insulin delivery and glucose monitoring for diabetes mellitus: a systematic review and meta-analysis.
        Ann Intern Med. 2012; 157: 336-347
        • Tunis S.L.
        • Minshall M.E.
        Self-monitoring of blood glucose (SMBG) for type 2 diabetes patients treated with oral anti-diabetes drugs and with a recent history of monitoring: cost-effectiveness in the US.
        Curr Med Res Opin. 2010; 26: 151-162
        • Tunis S.L.
        • Willis W.D.
        • Foos V.
        Self-monitoring of blood glucose (SMBG) in patients with type 2 diabetes on oral anti-diabetes drugs: cost-effectiveness in France, Germany, Italy, and Spain.
        Curr Med Res Opin. 2010; 26: 163-175
        • Vigersky R.A.
        • Fonda S.J.
        • Chellappa M.
        • Walker M.S.
        • Ehrhardt N.M.
        Short- and long-term effects of real-time continuous glucose monitoring in patients with type 2 diabetes.
        Diabetes Care. 2012; 35: 32-38
        • Weinstock R.S.
        • Xing D.
        • Maahs D.M.
        • et al.
        Severe hypoglycemia and diabetic ketoacidosis in adults with type 1 diabetes: results from the T1D Exchange clinic registry.
        J Clin Endocrinol Metab. 2013; 98: 3411-3419
        • American Association of Diabetes Educators
        Practice Advisory. Blood Glucose Meter Accuracy.
        2013 (Available at:)
        • US Food and Drug Administration
        Abbott Diabetes Care: Class 1 Recall - FreeStyle InsuLinx Blood Glucose Meters - Risk of Incorrect Test Result.
        2013 (Available at:)
        • US Food and Drug Administration
        FDA announces a voluntary recall of Nova Max Blood Glucose Test Strips.
        2013 (Available at:)
        • US Food and Drug Administration
        Abbott Issues Voluntary Recall of Certain FreeStyle® and FreeStyle Lite® Blood Glucose Test Strips in the United States.
        2013 (Available at:)
        • US Food and Drug Administration
        LifeScan, Inc. OneTouch Verio IQ Blood Glucose Meter – Class I Recall: Failure to Provide a Warning at Extremely High Blood Glucose Levels.
        2013 (Available at:)
      4. Competitive Bidding Program | Medicare.gov. Available at: http://www.medicare.gov/what-medicare-covers/part-b/competitive-bidding-program.html.

        • Freckmann G.
        • Baumstark A.
        • Schmid C.
        • Pleus S.
        • Link M.
        • Haug C.
        Evaluation of 12 blood glucose monitoring systems for self-testing: system accuracy and measurement reproducibility.
        Diabetes Technol Ther. 2014; 16: 113-122
        • Freckmann G.
        • Schmid C.
        • Baumstark A.
        • Pleus S.
        • Link M.
        • Haug C.
        System accuracy evaluation of 43 blood glucose monitoring systems for self-monitoring of blood glucose according to DIN EN ISO 15197.
        J Diabetes Sci Technol. 2012; 6: 1060-1075
        • Freckmann G.
        • Baumstark A.
        • Jendrike N.
        • et al.
        System accuracy evaluation of 27 blood glucose monitoring systems according to DIN EN ISO 15197.
        Diabetes Technol Ther. 2010; 12: 221-231
        • Klonoff D.C.
        • Prahalad P.
        Performance of Cleared Blood Glucose Monitors.
        J Diabetes Sci Technol. 2015; 9: 895-910
        • Baumstark A.
        • Schmid C.
        • Pleus S.
        • Rittmeyer D.
        • Haug C.
        • Freckmann G.
        Accuracy assessment of an advanced blood glucose monitoring system for self-testing with three reagent system lots following ISO 15197:2013.
        J Diabetes Sci Technol. 2014; 8: 1241-1242
        • Link M.
        • Pleus S.
        • Schmid C.
        • et al.
        Accuracy evaluation of three systems for self-monitoring of blood glucose with three different test strip lots following ISO 15197.
        J Diabetes Sci Technol. 2014; 8: 422-424
        • Pleus S.
        • Schmid C.
        • Link M.
        • et al.
        Accuracy assessment of two novel systems for self-monitoring of blood glucose following ISO 15197:2013.
        J Diabetes Sci Technol. 2014; 8: 906-908
      5. PuckreinG, ZangenehF, Nunlee-BlandG, XuL, ParkinCG, DavidsonJA.CMS Competitive Bidding Program Disrupted Access to Diabetes Supplies with Resultant Increased Mortality. Poster presented at: American Diabetes Association 75th Scientific Sessions; June 5–9, 2015; Boston, MA. Available at: http://www.nmqf.org/wp-content/uploads/2015/06/ADA_Puckrien_CMS_HANDOUT_rev-FINAL.pdf.

        • National Minority Quality Forum (NMQF)
        The Unintended Consequences of the Competitive Bidding Program: Late-breaking Data from the American Diabetes Association 75th Scientific Sessions.
        June 6, 2015 (Available at:)
      6. National Minority Quality Forum (NMQF). Disruption in Access to Diabetes Monitoring Supplies Leads to Increased Hospitalizations, Mortality Among Medicare Beneficiaries. Data Analysis of CMS Competitive Bidding Program Shows Harm to Patient Care. American Diabetes Association 75th Scientific Sessions; June 6, 2015. Available at: http://www.prnewswire.com/news-releases/disruption-in-access-to-diabetes-monitoring-suppliesleads-to-increased-hospitalizations-mortality-among-medicare-beneficiaries-300095195.html.

        • American Diabetes Association
        Fast Facts: Data and Statistics About Diabetes.
        2014 (Available at:)
        • Maahs D.M.
        • West N.A.
        • Lawrence J.M.
        • Mayer-Davis E.J.
        Epidemiology of type 1 diabetes.
        Endocrinol Metab Clin North Am. 2010; 39: 481-497
        • Joslin Diabetes Center, Joslin Clinic
        Clinical Guideline For Adults With Diabetes.
        2014 (Available at:)
        • Handelsman Y.
        • Mechanick J.I.
        • Blonde L.
        • et al.
        American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for developing a diabetes mellitus comprehensive care plan.
        Endocr Pract. 2011; 17: 1-53
        • Miller K.M.
        • Beck R.W.
        • Bergenstal R.M.
        • et al.
        Evidence of a strong association between frequency of self-monitoring of blood glucose and hemoglobin A1c levels in T1D exchange clinic registry participants.
        Diabetes Care. 2013; 36: 2009-2014
        • Kohnert K.D.
        • Heinke P.
        • Fritzsche G.
        • Vogt L.
        • Augstein P.
        • Salzsieder E.
        Evaluation of the mean absolute glucose change as a measure of glycemic variability using continuous glucose monitoring data.
        Diabetes Technol Ther. 2013; 15: 448-454
        • Kilpatrick E.S.
        • Rigby A.S.
        • Goode K.
        • Atkin S.L.
        Relating mean blood glucose and glucose variability to the risk of multiple episodes of hypoglycaemia in type 1 diabetes.
        Diabetologia. 2007; 50: 2553-2561
        • American Association of Diabetes Educators
        AADE Guidelines for the Practice of Diabetes Self-Management Education and Training.
        2011 (Available at:)
        • Kirk J.K.
        • Stegner J.
        Self-monitoring of blood glucose: practical aspects.
        J Diabetes Sci Technol. 2010; 4: 435-439
        • Garber A.J.
        • Abrahamson M.J.
        • Barzilay J.I.
        • et al.
        AACE/ACE comprehensive diabetes management algorithm 2015.
        Endocr Pract. 2015; 21: 438-447
        • Sperling M.
        • Tamborlane W.
        • Battelino T.
        • Weinzimer S.
        • Phillip M.
        Diabetes mellitus.
        in: Sperling M.E. Pediatric Endocrinology. 4th ed. Saunders Elsevier, Philadelphia, PA2014: 846-900
        • Cengiz E.
        • Xing D.
        • Wong J.C.
        • et al.
        Severe hypoglycemia and diabetic ketoacidosis among youth with type 1 diabetes in the T1D Exchange clinic registry.
        Pediatr Diabetes. 2013; 14: 447-454
        • Mauras N.
        • Mazaika P.
        • Buckingham B.
        • et al.
        Longitudinal assessment of neuroanatomical and cognitive differences in young children with type 1 diabetes: association with hyperglycemia.
        Diabetes. 2015; 64: 1770-1779
      7. Effect of intensive diabetes treatment on the development and progression of long-term complications in adolescents with insulin-dependent diabetes mellitus: Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group.
        J Pediatr. 1994; 125: 177-188
        • Niedel S.
        • Traynor M.
        • Acerini C.
        • Tamborlane W.V.
        • McKee M.
        Framework for development of self-management expertise: health professional guidance of the development of parental expertise following diagnosis of childhood Type 1 Diabetes.
        J Health Services Research Policy. 2013; (Epub ahead of print)
        • Wong J.C.
        • Foster N.C.
        • Maahs D.M.
        • et al.
        Real-time continuous glucose monitoring among participants in the T1D exchange clinic registry.
        Diabetes Care. 2014; 37: 2702-2709
        • Bailey T.S.
        • Zisser H.C.
        • Garg S.K.
        Reduction in hemoglobin A1c with real-time continuous glucose monitoring: results from a 12-week observational study.
        Diabetes Technol Ther. 2007; 9: 203-210
        • Tansey M.
        • Laffel L.
        • Cheng J.
        • et al.
        Satisfaction with continuous glucose monitoring in adults and youths with type 1 diabetes.
        Diabet Med. 2011; 28: 1118-1122
        • Tsalikian E.
        • Fox L.
        • Weinzimer S.
        • et al.
        Feasibility of prolonged continuous glucose monitoring in toddlers with type 1 diabetes.
        Pediatr Diabetes. 2012; 13: 301-307
        • Miller K.M.
        • Foster N.C.
        • Beck R.W.
        • et al.
        Current state of type 1 diabetes treatment in the U.S.: updated data from the T1D Exchange clinic registry.
        Diabetes Care. 2015; 38: 971-978
        • Slover R.H.
        • Welsh J.B.
        • Criego A.
        • et al.
        Effectiveness of sensor-augmented pump therapy in children and adolescents with type 1 diabetes in the STAR 3 study.
        Pediatr Diabetes. 2012; 13: 6-11
      8. US Food and Drug Administration. MiniMed 530G FDA Approval Letter. Available at: http://www.accessdata.fda.gov/cdrh_docs/pdf12/p120010a.pdf. Accessed 2013.

        • Buckingham B.A.
        • Raghinaru D.
        • Cameron F.
        • et al.
        Predictive low-glucose insulin suspension reduces duration of nocturnal hypoglycemia in children without increasing ketosis.
        Diabetes Care. 2015; 38: 1197-1204
        • Phillip M.
        • Danne T.
        • Shalitin S.
        • et al.
        Use of continuous glucose monitoring in children and adolescents.
        Pediatr Diabetes. 2012; 13: 215-228
      9. US Food and Drug Administration. Press Announcements > FDA Permits Marketing of First System of Mobile Medical Apps For Continuous Glucose Monitoring. Available at: http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm431385.htm.

        • Dexcom
        FDA Approves Dexcom G5® Mobile Continuous Glucose Monitoring System | Dexcom.
        August 24, 2015 (Available at: . Accessed 2015)
        • Medtronic
        Press Release: Medtronic receives FDA clearance of MiniMed® Connect for more convenient access to personal diabetes data.
        June 5, 2015 (Available at: . Accessed 2015)
      10. The Nightscout Project. Available at: http://www.nightscout.info/.

        • Czupryniak L.
        • Barkai L.
        • Bolgarska S.
        • et al.
        Self-monitoring of blood glucose in diabetes: from evidence to clinical reality in Central and Eastern Europe–recommendations from the international Central-Eastern European expert group.
        Diabetes Technol Ther. 2014; 16: 460-475
        • Simon J.
        • Gray A.
        • Clarke P.
        • et al.
        Cost effectiveness of self monitoring of blood glucose in patients with non-insulin treated type 2 diabetes: economic evaluation of data from the DiGEM trial.
        BMJ. 2008; 336: 1177-1180
        • Willett L.R.
        ACP Journal Club. Meta-analysis: self-monitoring in non-insulin-treated type 2 diabetes improved HbA1c by 0.25%.
        Ann Intern Med. 2012; 156: JC6-12
        • Polonsky W.H.
        • Fisher L.
        • Schikman C.H.
        • et al.
        A structured self-monitoring of blood glucose approach in type 2 diabetes encourages more frequent, intensive, and effective physician interventions: results from the STeP study.
        Diabetes Technol Ther. 2011; 13: 797-802
        • Scavini M.
        • Bosi E.
        • Ceriello A.
        • et al.
        Prospective, randomized trial on intensive SMBG management added value in non-insulin-treated T2DM patients (PRISMA): a study to determine the effect of a structured SMBG intervention.
        Acta Diabetol. 2013; 50: 663-672
        • Zisman A.
        • Vlajnic A.
        • Zhou R.
        The BEAM Factor: An easy-to-determine clinical indicator for deciding when to add prandial insulin to basal insulin in type 2 diabetes.
        Diabetes. 2011; (Poster 1121-p): A235-A352
        • Zhou J.
        • Mo Y.
        • Li H.
        • et al.
        Relationship between HbA1c and continuous glucose monitoring in Chinese population: a multicenter study.
        PLoS One. 2013; 8: e83827
        • Tildesley H.D.
        • Wright A.M.
        • Chan J.H.
        • et al.
        A comparison of internet monitoring with continuous glucose monitoring in insulin-requiring type 2 diabetes mellitus.
        Can J Diabetes. 2013; 37: 305-308
        • Martin J.A.
        • Hamilton B.E.
        • Sutton P.D.
        • Ventura S.J.
        • Menacker F.
        • Munson M.L.
        Births: final data for 2002.
        Natl Vital Stat Rep. 2003; 52: 1-113
      11. Medical Management of Pregnancy Complicated by Diabetes.
        in: Jovanovic L. 4th ed. American Diabetes Association, Alexandria, VA2009
        • Jovanovic L.
        • Martin S.
        Developing criteria for defining type 2 diabetes in pregnancy.
        in: Feinglos M. Bethel M.A. Contemporary Endocrinology: Type 2 Diabetes Mellitus: An Evidence-Based Approach to Practical Management. Humana Press, Totowa, NJ2008: 365-375 (10.1007/978-1-60327-043-4_22)
        • Tennant P.W.
        • Glinianaia S.V.
        • Bilous R.W.
        • Rankin J.
        • Bell R.
        Pre-existing diabetes, maternal glycated haemoglobin, and the risks of fetal and infant death: a population-based study.
        Diabetologia. 2014; 57: 285-294
        • Buchanan T.A.
        • Metzger B.E.
        • Freinkel N.
        Accelerated starvation in late pregnancy: a comparison between obese women with and without gestational diabetes mellitus.
        Am J Obstet Gynecol. 1990; 162: 1015-1020
        • American Diabetes Association
        Gestational diabetes mellitus.
        Diabetes Care. 2004; 27: S88-S90
        • Jovanovic L.
        The role of continuous glucose monitoring in gestational diabetes mellitus.
        Diabetes Technol Ther. 2000; 2: S67-S71
        • Jovanovic L.
        • Peterson C.M.
        • Saxena B.B.
        • Dawood M.Y.
        • Saudek C.D.
        Feasibility of maintaining normal glucose profiles in insulin-dependent pregnant diabetic women.
        Am J Med. 1980; 68: 105-112
        • Boutati E.I.
        • Raptis S.A.
        Self-monitoring of blood glucose as part of the integral care of type 2 diabetes.
        Diabetes Care. 2009; 32: S205-S210
      12. JovanovicL.2014 Personal Communication.

        • Kropff J.
        • Bruttomesso D.
        • Doll W.
        • et al.
        Accuracy of two continuous glucose monitoring systems: a head-to-head comparison under clinical research centre and daily life conditions.
        Diabetes Obes Metab. 2015; 17: 343-349
        • Peyser T.A.
        • Nakamura K.
        • Price D.
        • Bohnett L.C.
        • Hirsch I.B.
        • Balo A.
        Hypoglycemic Accuracy and Improved Low Glucose Alerts of the Latest Dexcom G4 Platinum Continuous Glucose Monitoring System.
        Diabetes Technol Ther. 2015; 17: 548-554
        • Matuleviciene V.
        • Joseph J.I.
        • Andelin M.
        • et al.
        A clinical trial of the accuracy and treatment experience of the Dexcom G4 sensor (Dexcom G4 system) and Enlite sensor (guardian REAL-time system) tested simultaneously in ambulatory patients with type 1 diabetes.
        Diabetes Technol Ther. 2014; 16: 759-767
        • Chen R.
        • Yogev Y.
        • Ben-Haroush A.
        • Jovanovic L.
        • Hod M.
        • Phillip M.
        Continuous glucose monitoring for the evaluation and improved control of gestational diabetes mellitus.
        J Matern Fetal Neonatal Med. 2003; 14: 256-260
        • Murphy H.R.
        Continuous glucose monitoring in pregnancy: we have the technology but not all the answers.
        Diabetes Care. 2013; 36: 1818-1819
        • Murphy H.R.
        • Rayman G.
        • Lewis K.
        • et al.
        Effectiveness of continuous glucose monitoring in pregnant women with diabetes: randomised clinical trial.
        BMJ. 2008; 337: a1680
        • Secher A.L.
        • Ringholm L.
        • Andersen H.U.
        • Damm P.
        • Mathiesen E.R.
        The effect of real-time continuous glucose monitoring in pregnant women with diabetes: a randomized controlled trial.
        Diabetes Care. 2013; 36: 1877-1883
        • Yu F.
        • Lv L.
        • Liang Z.
        • et al.
        Continuous glucose monitoring effects on maternal glycemic control and pregnancy outcomes in patients with gestational diabetes mellitus: a prospective cohort study.
        J Clin Endocrinol Metab. 2014; 99: 4674-4682
      13. US National Institutes of Health. Continuous Glucose Monitoring in Women With Type 1 Diabetes in Pregnancy Trial (CONCEPTT). Available at: http://clinicaltrials.gov/show/NCT01788527.

        • McLachlan K.
        • Jenkins A.
        • O'Neal D.
        The role of continuous glucose monitoring in clinical decision-making in diabetes in pregnancy.
        Aust N Z J Obstet Gynaecol. 2007; 47: 186-190
      14. Consensus statement on self-monitoring of blood glucose.
        Diabetes Care. 1987; 10: 95-99
      15. Self-monitoring of blood glucose. American Diabetes Association.
        Diabetes Care. 1994; 17: 81-86
        • Boren S.A.
        • Clarke W.L.
        Analytical and clinical performance of blood glucose monitors.
        J Diabetes Sci Technol. 2010; 4: 84-97
        • Rebel A.
        • Rice M.A.
        • Fahy B.G.
        Accuracy of point-of-care glucose measurements.
        J Diabetes Sci Technol. 2012; 6: 396-411
        • Weitgasser R.
        • Gappmayer B.
        • Pichler M.
        Newer portable glucose meters–analytical improvement compared with previous generation devices?.
        Clin Chem. 1999; 45: 1821-1825
        • Vashist S.K.
        Continuous glucose monitoring systems: a review.
        Diagnostics. 2013; 3: 385-412
        • Bailey T.S.
        • Chang A.
        • Christiansen M.
        Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm.
        J Diabetes Sci Technol. 2015; 9: 209-214
        • Zschornack E.
        • Schmid C.
        • Pleus S.
        • et al.
        Evaluation of the performance of a novel system for continuous glucose monitoring.
        J Diabetes Sci Technol. 2013; 7: 815-823
        • Damiano E.R.
        • McKeon K.
        • El-Khatib F.H.
        • Zheng H.
        • Nathan D.M.
        • Russell S.J.
        A comparative effectiveness analysis of three continuous glucose monitors: the Navigator, G4 Platinum, and Enlite.
        J Diabetes Sci Technol. 2014; 8: 699-708
        • International Organization for Standardization
        ISO 15197:2003 - In vitro diagnostic test systems – Requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus.
        2003 (Available at:)
        • Wilmoth D.R.
        The relationships between common measures of glucose meter performance.
        J Diabetes Sci Technol. 2012; 6: 1087-1093
        • Obermaier K.
        • Schmelzeisen-Redeker G.
        • Schoemaker M.
        • et al.
        Performance evaluations of continuous glucose monitoring systems: precision absolute relative deviation is part of the assessment.
        J Diabetes Sci Technol. 2013; 7: 824-832
        • Rodbard D.
        Characterizing accuracy and precision of glucose sensors and meters.
        J Diabetes Sci Technol. 2014; 8: 980-985
        • Pleus S.
        • Schmid C.
        • Link M.
        • et al.
        Performance evaluation of a continuous glucose monitoring system under conditions similar to daily life.
        J Diabetes Sci Technol. 2013; 7: 833-841
        • Pleus S.
        • Schoemaker M.
        • Morgenstern K.
        • et al.
        Rate-of-change dependence of the performance of two CGM systems during induced glucose swings.
        J Diabetes Sci Technol. 2015; 9: 801-807
        • Clarke W.L.
        • Cox D.
        • Gonder-Frederick L.A.
        • Carter W.
        • Pohl S.L.
        Evaluating clinical accuracy of systems for self-monitoring of blood glucose.
        Diabetes Care. 1987; 10: 622-628
        • Parkes J.L.
        • Slatin S.L.
        • Pardo S.
        • Ginsberg B.H.
        A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose.
        Diabetes Care. 2000; 23: 1143-1148
        • Klonoff D.C.
        • Lias C.
        • Vigersky R.
        • et al.
        The surveillance error grid.
        J Diabetes Sci Technol. 2014; 8: 658-672
        • Kovatchev B.P.
        • Wakeman C.A.
        • Breton M.D.
        • et al.
        Computing the surveillance error grid analysis: procedure and examples.
        J Diabetes Sci Technol. 2014; 8: 673-684
      16. US Food and Drug Administration. FDA 2003–To come.

        • International Organization for Standardization
        ISO 15197:2013 - In vitro diagnostic test systems – Requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus.
        2013 (Available at:)
        • US Food and Drug Administration
        Self-Monitoring Blood Glucose Test Systems for Over-the-Counter Use. Draft Guidance for Industry and Food and Drug Administration Staff.
        2014 (Available at:)
        • Freckmann G.
        • Schmid C.
        • Baumstark A.
        • Rutschmann M.
        • Haug C.
        • Heinemann L.
        Analytical performance requirements for systems for self-monitoring of blood glucose with focus on system accuracy: relevant differences among ISO 15197:2003, ISO 15197:2013, and current FDA recommendations.
        J Diabetes Sci Technol. 2015; 9: 885-894
        • Freckmann G.
        • Pleus S.
        • Link M.
        • et al.
        Accuracy evaluation of four blood glucose monitoring systems in unaltered blood samples in the low glycemic range and blood samples in the concentration range defined by ISO 15197.
        Diabetes Technol Ther. 2015; 17: 625-634
        • Klonoff D.C.
        • Reyes J.S.
        Do currently available blood glucose monitors meet regulatory standards?.
        J Diabetes Sci Technol. 2013; 7: 1071-1083
        • Link M.
        • Schmid C.
        • Pleus S.
        • et al.
        System accuracy evaluation of four systems for self-monitoring of blood glucose following ISO 15197 using a glucose oxidase and a hexokinase-based comparison method.
        J Diabetes Sci Technol. 2015; 9: 1041-1050
        • Jendrike N.
        • Rittmeyer D.
        • Pleus S.
        • Baumstark A.
        • Haug C.
        • Freckmann G.
        ISO 15197:2013 accuracy evaluation of two CE-marked systems for self-monitoring of blood glucose.
        J Diabetes Sci Technol. 2015; 9: 934-935
        • Walsh J.
        • Roberts R.
        • Vigersky R.A.
        • Schwartz F.
        New Criteria for Assessing the Accuracy of Blood Glucose Monitors Meeting, October 28, 2011.
        J Diabetes Sci Technol. 2012; 6: 466-474
        • Breton M.D.
        • Kovatchev B.P.
        Impact of blood glucose self-monitoring errors on glucose variability, risk for hypoglycemia, and average glucose control in type 1 diabetes: an in silico study.
        J Diabetes Sci Technol. 2010; 4: 562-570
        • Schnell O.
        • Erbach M.
        • Wintergerst E.
        Higher accuracy of self-monitoring of blood glucose in insulin-treated patients in Germany: clinical and economical aspects.
        J Diabetes Sci Technol. 2013; 7: 904-912
        • Facchinetti A.
        • Sparacino G.
        • Cobelli C.
        Modeling the error of continuous glucose monitoring sensor data: critical aspects discussed through simulation studies.
        J Diabetes Sci Technol. 2010; 4: 4-14
        • Karon B.S.
        • Boyd J.C.
        • Klee G.G.
        Empiric validation of simulation models for estimating glucose meter performance criteria for moderate levels of glycemic control.
        Diabetes Technol Ther. 2013; 15: 996-1003
        • Boyd J.C.
        • Bruns D.E.
        Monte Carlo simulation in establishing analytical quality requirements for clinical laboratory tests meeting clinical needs.
        Methods Enzymol. 2009; 467: 411-433
        • Boyd J.C.
        • Bruns D.E.
        Quality specifications for glucose meters: assessment by simulation modeling of errors in insulin dose.
        Clin Chem. 2001; 47: 209-214
        • Baumstark A.
        • Pleus S.
        • Schmid C.
        • Link M.
        • Haug C.
        • Freckmann G.
        Lot-to-lot variability of test strips and accuracy assessment of systems for self-monitoring of blood glucose according to ISO 15197.
        J Diabetes Sci Technol. 2012; 6: 1076-1086
        • Kristensen G.B.
        • Christensen N.G.
        • Thue G.
        • Sandberg S.
        Between-lot variation in external quality assessment of glucose: clinical importance and effect on participant performance evaluation.
        Clin Chem. 2005; 51: 1632-1636
        • Brazg R.
        • Klaff L.J.
        • Parkin C.G.
        Performance variability of seven commonly used self-monitoring of blood glucose systems: clinical considerations for patients and providers.
        J Diabetes Sci Technol. 2013; 7: 144-152
        • Tack C.
        • Pohlmeier H.
        • Behnke T.
        • et al.
        Accuracy evaluation of five blood glucose monitoring systems obtained from the pharmacy: a European multicenter study with 453 subjects.
        Diabetes Technol Ther. 2012; 14: 330-337
        • Pfützner A.
        • Schipper C.
        • Ramljak S.
        • et al.
        Evaluation of the effects of insufficient blood volume samples on the performance of blood glucose self-test meters.
        J Diabetes Sci Technol. 2013; 7: 1522-1529
        • Dungan K.
        • Chapman J.
        • Braithwaite S.S.
        • Buse J.
        Glucose measurement: confounding issues in setting targets for inpatient management.
        Diabetes Care. 2007; 30: 403-409
        • Vasudevan S.
        • Hirsch I.B.
        Interference of intravenous vitamin C with blood glucose testing.
        Diabetes Care. 2014; 37: e93-e94
        • Kilo C.
        • Pinson M.
        • Joynes J.O.
        • et al.
        Evaluation of a new blood glucose monitoring system with auto-calibration.
        Diabetes Technol Ther. 2005; 7: 283-294
        • Helton K.L.
        • Ratner B.D.
        • Wisniewski N.A.
        Biomechanics of the sensor-tissue interface-effects of motion, pressure, and design on sensor performance and foreign body response-part II: examples and application.
        J Diabetes Sci Technol. 2011; 5: 647-656
        • Ginsberg B.H.
        Factors affecting blood glucose monitoring: sources of errors in measurement.
        J Diabetes Sci Technol. 2009; 3: 903-913
        • Ginsberg B.H.
        We need tighter regulatory standards for blood glucose monitoring, but they should be for accuracy disclosure.
        J Diabetes Sci Technol. 2010; 4: 1265-1268
        • Thorpe G.H.
        Assessing the quality of publications evaluating the accuracy of blood glucose monitoring systems.
        Diabetes Technol Ther. 2013; 15: 253-259
        • Crowe D.J.
        • Klonoff D.C.
        Time synching or time sinking?.
        Diabetes Technol Ther. 2005; 7: 663-664
        • Kristensen G.B.
        • Monsen G.
        • Skeie S.
        • Sandberg S.
        Standardized evaluation of nine instruments for self-monitoring of blood glucose.
        Diabetes Technol Ther. 2008; 10: 467-477
        • Hasslacher C.
        • Kulozik F.
        • Platten I.
        Analytical performance of glucose monitoring systems at different blood glucose ranges and analysis of outliers in a clinical setting.
        J Diabetes Sci Technol. 2014; 8: 466-472
        • Rodbard D.
        Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control.
        Diabetes Technol Ther. 2009; 11: S55-S67
        • Rodbard D.
        Optimizing display, analysis, interpretation and utility of self-monitoring of blood glucose (SMBG) data for management of patients with diabetes.
        J Diabetes Sci Technol. 2007; 1: 62-71
        • Bergenstal R.M.
        • Ahmann A.J.
        • Bailey T.
        • et al.
        Recommendations for standardizing glucose reporting and analysis to optimize clinical decision making in diabetes: the Ambulatory Glucose Profile (AGP).
        J Diabetes Sci Technol. 2013; 15: 198-211
        • Nathan D.M.
        • Kuenen J.
        • Borg R.
        • et al.
        Translating the A1C assay into estimated average glucose values.
        Diabetes Care. 2008; 31: 1473-1478
        • JDRF CGM Study Group
        JDRF randomized clinical trial to assess the efficacy of real-time continuous glucose monitoring in the management of type 1 diabetes: research design and methods.
        Diabetes Technol Ther. 2008; 10: 310-321
        • Rodbard D.
        Clinical interpretation of indices of quality of glycemic control and glycemic variability.
        Postgrad Med. 2011; 123: 107-118
        • DeVries J.H.
        Glucose variability: where it is important and how to measure it.
        Diabetes. 2013; 62: 1405-1408
        • Rodbard D.
        Evaluating quality of glycemic control: graphical displays of hypo- and hyperglycemia, time in target range, and mean glucose.
        J Diabetes Sci Technol. 2015; 9 (Available at:): 56-62
        • Mazze R.S.
        • Lucido D.
        • Langer O.
        • Hartmann K.
        • Rodbard D.
        Ambulatory glucose profile: representation of verified self-monitored blood glucose data.
        Diabetes Care. 1987; 10: 111-117
        • Rodbard D.
        Potential role of computers in clinical investigation and management of diabetes mellitus.
        Diabetes Care. 1988; 11: 54-61
        • Mazze R.S.
        • Strock E.
        • Wesley D.
        • et al.
        Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis.
        Diabetes Technol Ther. 2008; 10: 149-159
        • Pernick N.L.
        • Rodbard D.
        Personal computer programs to assist with self-monitoring of blood glucose and self-adjustment of insulin dosage.
        Diabetes Care. 1986; 9: 61-69
        • Davis W.A.
        • Bruce D.G.
        • Davis T.M.
        Does self-monitoring of blood glucose improve outcome in type 2 diabetes? The Fremantle Diabetes Study.
        Diabetologia. 2007; 50: 510-515
        • Franciosi M.
        • Pellegrini F.
        • De Berardis G.
        • et al.
        The impact of blood glucose self-monitoring on metabolic control and quality of life in type 2 diabetic patients: an urgent need for better educational strategies.
        Diabetes Care. 2001; 24: 1870-1877
        • Guerci B.
        • Floriot M.
        • Böhme P.
        • et al.
        Clinical performance of CGMS in type 1 diabetic patients treated by continuous subcutaneous insulin infusion using insulin analogs.
        Diabetes Care. 2003; 26: 582-589
        • Handelsman Y.
        • Bloomgarden Z.T.
        • Grunberger G.
        • et al.
        American Association of Clinical Endocrinologists and American College of Endocrinology - Clinical Practice Guidelines For Developing a Diabetes Mellitus Comprehensive Care Plan - 2015.
        Endocr Pract. 2015; 21: 1-87
        • Wentholt I.M.
        • Hoekstra J.B.
        • Devries J.H.
        A critical appraisal of the continuous glucose-error grid analysis.
        Diabetes Care. 2006; 29: 1805-1811
        • Davey R.J.
        • Low C.
        • Jones T.W.
        • Fournier P.A.
        Contribution of an intrinsic lag of continuous glucose monitoring systems to differences in measured and actual glucose concentrations changing at variable rates in vitro.
        J Diabetes Sci Technol. 2010; 4: 1393-1399
        • Liebl A.
        • Henrichs H.R.
        • Heinemann L.
        • et al.
        Continuous glucose monitoring: evidence and consensus statement for clinical use.
        J Diabetes Sci Technol. 2013; 7: 500-519
        • Rodbard D.
        Display of glucose distributions by date, time of day, and day of week: New and improved methods.
        J Diabetes Sci Technol. 2009; 3: 1388-1394

      Linked Article

      • Correction
        Endocrine Practice Vol. 22Issue 4
        • Preview
          In the 2016 Outpatient Glucose Monitoring Consensus Statement published in the February issue of Endocrine Practice (Volume 22, pgs. 231–261), there were omissions in Tables 2 (p. 236) and 6 (p. 245) of the print version. In Table 2, fasting plasma glucose was tested before meals in addition to on awakening. In Table 6, “%C” should read “%CV.” We apologize for the errors.
        • Full-Text
        • PDF