Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm – 2019 Executive Summary

      ABSTRACT

      Abbreviations: A1C = hemoglobin A1C; AACE = American Association of Clinical Endocrinologists; ACCORD = Action to Control Cardiovascular Risk in Diabetes; ACCORD BP = Action to Control Cardiovascular Risk in Diabetes Blood Pressure; ACE = American College of Endocrinology; ACEI = angiotensin-converting enzyme inhibitor; AGI = alpha-glucosidase inhibitor; apo B = apolipoprotein B; ARB = angiotensin II receptor blocker; ASCVD = atherosclerotic cardiovascular disease; BAS = bile acid sequestrant; BMI = body mass index; BP = blood pressure; CCB = calcium channel blocker; CGM = continuous glucose monitoring; CHD = coronary heart disease; CKD = chronic kidney disease; DKA = diabetic ketoacidosis; DPP4 = dipeptidyl peptidase 4; eGFR = estimated glomerular filtration rate; EPA = eicosapentaenoic acid; ER = extended release; FDA = Food and Drug Administration; GLP1 = glucagon-like peptide 1; HDL-C = high-density-lipoprotein cholesterol; HeFH = heterozygous familial hypercholesterolemia; LDL-C = low-density-lipoprotein cholesterol; LDL-P = low-density-lipoprotein particle; Look AHEAD = Look Action for Health in Diabetes; NPH = neutral protamine Hagedorn; OSA = obstructive sleep apnea; PCSK9 = proprotein convertase subtilisin-kexin type 9 serine protease; RCT = randomized controlled trial; SU = sulfonylurea; SGLT2 = sodium-glucose cotransporter 2; SMBG = self-monitoring of blood glucose; T2D = type 2 diabetes; TZD = thiazolidinedione
      To read this article in full you will need to make a payment
      AACE Member Login
      AACE Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Butler A.E.
        • Janson J.
        • Bonner-Weir S.
        • Ritzel R.
        • Rizza R.A.
        • Butler P.C.
        Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes.
        Diabetes. 2003; 52: 102-110
        • Kahn S.E.
        The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes.
        Diabetologia. 2003; 46: 3-19
        • Kahn S.E.
        • Lachin J.M.
        • Zinman B.
        • et al.
        Effects of rosiglitazone, glyburide, and metformin on beta-cell function and insulin sensitivity in adopt.
        Diabetes. 2011; 60: 1552-1560
        • Handelsman Y.
        • Bloomgarden Z.T.
        • Grunberger G.
        • et al.
        American Association of Clinical Endocrinologists and American College of Endocrinology: Clinical practice guidelines for developing a diabetes mellitus comprehensive care plan—2015.
        Endocr Pract. 2015; 21: 1-87
        • Wadden T.A.
        • West D.S.
        • Neiberg R.H.
        • et al.
        One-year weight losses in the Look AHEAD study: factors associated with success.
        Obesity (Silver Spring). 2009; 17: 713-722
        • Look AHEAD Research Group
        • et al.
        Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the Look AHEAD trial.
        Diabetes Care. 2007; 30: 1374-1383
        • Ratner R.
        • Goldberg R.
        • Haffner S.
        • et al.
        Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the diabetes prevention program.
        Diabetes Care. 2005; 28: 888-894
        • Hoskin M.A.
        • Bray G.A.
        • Hattaway K.
        • et al.
        Prevention of diabetes through the lifestyle intervention: lessons learned from the Diabetes Prevention Program and Outcomes Study and its translation to practice.
        Curr Nutr Rep. 2014; 3: 364-378
        • Evert A.B.
        • Boucher J.L.
        • Cypress M.
        • et al.
        Nutrition therapy recommendations for the management of adults with diabetes.
        Diabetes Care. 2013; 36: 3821-3842
        • Bergenstal R.M.
        • Johnson M.
        • Powers M.A.
        • et al.
        Adjust to target in type 2 diabetes: comparison of a simple algorithm with carbohydrate counting for adjustment of mealtime insulin glulisine.
        Diabetes Care. 2008; 31: 1305-1310
        • Keogh J.B.
        • Clifton P.M.
        Meal replacements for weight loss in type 2 diabetes in a community setting.
        J Nutr Metab. 2012; 2012 (918571)
        • Ditschuneit H.H.
        • Flechtner-Mors M.
        • Johnson T.D.
        • Adler G.
        Metabolic and weight-loss effects of a long-term dietary intervention in obese patients.
        Am J Clin Nutr. 1999; 69: 198-204
        • Flechtner-Mors M.
        • Ditschuneit H.H.
        • Johnson T.D.
        • Suchard M.A.
        • Adler G.
        Metabolic and weight loss effects of long-term dietary intervention in obese patients: four-year results.
        Obes Res. 2000; 8: 399-402
        • Sbrocco T.
        • Nedegaard R.C.
        • Stone J.M.
        • Lewis E.L.
        Behavioral choice treatment promotes continuing weight loss: preliminary results of a cognitive-behavioral decision-based treatment for obesity.
        J Consult Clin Psychol. 1999; 67: 260-266
        • Fuller P.R.
        • Perri M.G.
        • Leermakers E.A.
        • Guyer L.K.
        Effects of a personalized system of skill acquisition and an educational program in the treatment of obesity.
        Addict Behav. 1998; 23: 97-100
        • Meyers A.W.
        • Graves T.J.
        • Whelan J.P.
        • Barclay D.R.
        An evaluation of a television-delivered behavioral weight loss program: are the ratings acceptable?.
        J Consult Clin Psychol. 1996; 64: 172-178
        • Perri M.G.
        • McAllister D.A.
        • Gange J.J.
        • Jordan R.C.
        • McAdoo G.
        • Nezu A.M.
        Effects of four maintenance programs on the long-term management of obesity.
        J Consult Clin Psychol. 1988; 56: 529-534
        • Metz J.A.
        • Stern J.S.
        • Kris-Etherton P.
        • et al.
        A randomized trial of improved weight loss with a prepared meal plan in overweight and obese patients: impact on cardiovascular risk reduction.
        Arch Intern Med. 2000; 160: 2150-2158
        • Gonzalez-Campoy J.M.
        • St Jeor S.T.
        • Castorino K.
        • et al.
        Clinical practice guidelines for healthy eating for the prevention and treatment of metabolic and endocrine diseases in adults: cosponsored by the American Association of Clinical Endocrinologists/the American College of Endocrinology and the Obesity Society.
        Endocr Pract. 2013; 19: 1-82
        • Balducci S.
        • Alessi E.
        • Cardelli P.
        • Cavallo S.
        • Fallucca F.
        • Pugliese G.
        Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis: response to Snowling and Hopkins.
        Diabetes Care. 2007; 30 (author reply e26): e25
        • Manders R.J.
        • Van Dijk J.W.
        • van Loon L.J.
        Low-intensity exercise reduces the prevalence of hyperglycemia in type 2 diabetes.
        Med Sci Sports Exerc. 2010; 42: 219-225
        • Hansen D.
        • Dendale P.
        • Jonkers R.A.
        • et al.
        Continuous low- to moderate-intensity exercise training is as effective as moderate-to high-intensity exercise training at lowering blood HbA(1c) in obese type 2 diabetes patients.
        Diabetologia. 2009; 52: 1789-1797
        • Praet S.F.
        • Manders R.J.
        • Lieverse A.G.
        • et al.
        Influence of acute exercise on hyperglycemia in insulin-treated type 2 diabetes.
        Med Sci Sports Exerc. 2006; 38: 2037-2044
        • De Feyter H.M.
        • Praet S.F.
        • van den Broek N.M.
        • et al.
        Exercise training improves glycemic control in long-standing insulin-treated type 2 diabetic patients.
        Diabetes Care. 2007; 30: 2511-2513
        • Church T.S.
        • Blair S.N.
        • Cocreham S.
        • et al.
        Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial [erratum in JAMA. 2011;305:892].
        JAMA. 2010; 304: 2253-2262
        • Balducci S.
        • Zanuso S.
        • Nicolucci A.
        • et al.
        Effect of an intensive exercise intervention strategy on modifiable cardiovascular risk factors in subjects with type 2 diabetes mellitus: a randomized controlled trial: the Italian Diabetes and Exercise Study (IDES).
        Arch Intern Med. 2010; 170: 1794-1803
        • Vinik A.I.
        • Vinik E.J.
        • Colberg S.R.
        • Morrison S.
        Falls risk in older adults with type 2 diabetes.
        Clin Geriatr Med. 2015; 31: 89-99
        • Colberg S.R.
        • Sigal R.J.
        • Fernhall B.
        • et al.
        Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary.
        Diabetes Care. 2010; 33: 2692-2696
        • McNeil J.
        • Doucet Eacute
        • Chaput J.P.
        Inadequate sleep as a contributor to obesity and type 2 diabetes.
        Can J Diabetes. 2013; 37: 103-108
        • Cappuccio F.P.
        • Cooper D.
        • D'Elia L.
        • Strazzullo P.
        • Miller M.A.
        Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies.
        Eur Heart J. 2011; 32: 1484-1492
        • Patel S.R.
        • Malhotra A.
        • White D.P.
        • Gottlieb D.J.
        • Hu F.B.
        Association between reduced sleep and weight gain in women.
        Am J Epidemiol. 2006; 164: 947-954
        • Gottlieb D.J.
        • Redline S.
        • Nieto F.J.
        • et al.
        Association of usual sleep duration with hypertension: the Sleep Heart Health Study.
        Sleep. 2006; 29: 1009-1014
        • Chaput J.P.
        • Després J.P.
        • Bouchard C.
        • Tremblay A.
        Short sleep duration is associated with reduced leptin levels and increased adiposity: results from the Quebec Family Study.
        Obesity (Silver Spring). 2007; 15: 253-261
        • Ayas N.T.
        • White D.P.
        • Manson J.E.
        • et al.
        A prospective study of sleep duration and coronary heart disease in women.
        Arch Intern Med. 2003; 163: 205-209
        • Lindberg E.
        • Carter N.
        • Gislason T.
        • Janson C.
        Role of snoring and daytime sleepiness in occupational accidents.
        Am J Respir Crit Care Med. 2001; 164: 2031-2035
        • Winkelman J.W.
        • Redline S.
        • Baldwin C.M.
        • Resnick H.E.
        • Newman A.B.
        • Gottlieb D.J.
        Polysomnographic and health-related quality of life correlates of restless legs syndrome in the Sleep Heart Health Study.
        Sleep. 2009; 32: 772-778
        • Valencia-Flores M.
        • Orea A.
        • Castaño V.A.
        • et al.
        Prevalence of sleep apnea and electrocardiographic disturbances in morbidly obese patients.
        Obes Res. 2000; 8: 262-269
        • Anderson R.J.
        • Freedland K.E.
        • Clouse R.E.
        • Lustman P.J.
        The prevalence of comorbid depression in adults with diabetes: a meta-analysis.
        Diabetes Care. 2001; 24: 1069-1078
        • Anderson R.J.
        • Grigsby A.B.
        • Freedland K.E.
        • et al.
        Anxiety and poor glycemic control: a meta-analytic review of the literature.
        Int J Psychiatry Med. 2002; 32: 235-247
        • Harkness E.
        • Macdonald W.
        • Valderas J.
        • Coventry P.
        • Gask L.
        • Bower P.
        Identifying psychosocial interventions that improve both physical and mental health in patients with diabetes: a systematic review and meta-analysis.
        Diabetes Care. 2010; 33: 926-930
        • Garvey W.T.
        • Garber A.J.
        • Mechanick J.I.
        • et al.
        American Association of Clinical Endocrinologists and American College of Endocrinology position statement on the 2014 advanced framework for a new diagnosis of obesity as a chronic disease.
        Endocr Pract. 2014; 20: 977-989
        • Mechanick J.I.
        • Garber A.J.
        • Handelsman Y.
        • Garvey W.T.
        American Association of Clinical Endocrinologists' position statement on obesity and obesity medicine.
        Endocr Pract. 2012; 18: 642-648
        • Garvey W.T.
        • Mechanick J.I.
        • Brett E.M.
        • et al.
        American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity.
        Endocr Pract. 2016; 22: 1-203
        • Garvey W.T.
        New tools for weight-loss therapy enable a more robust medical model for obesity treatment: rationale for a complications-centric approach.
        Endocr Pract. 2013; 19: 864-874
        • Bray G.A.
        • Ryan D.H.
        Medical therapy for the patient with obesity.
        Circulation. 2012; 125: 1695-1703
        • Kip K.E.
        • Marroquin O.C.
        • Kelley D.E.
        • et al.
        Clinical importance of obesity versus the metabolic syndrome in cardiovascular risk in women: a report from the Women's Ischemia Syndrome Evaluation (WISE) study.
        Circulation. 2004; 109: 706-713
        • Yusuf S.
        • Hawken S.
        • Ounpuu S.
        • et al.
        Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study.
        Lancet. 2005; 366: 1640-1649
        • Hutton B.
        • Fergusson D.
        Changes in body weight and serum lipid profile in obese patients treated with orlistat in addition to a hypocaloric diet: a systematic review of randomized clinical trials.
        Am J Clin Nutr. 2004; 80: 1461-1468
        • Torgerson J.S.
        • Hauptman J.
        • Boldrin M.N.
        • Sjöström L.
        Xenical in the prevention of Diabetes in Obese Subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients [erratum in Diabetes Care. 2004;27:856].
        Diabetes Care. 2004; 27: 155-161
        • Smith S.R.
        • Weissman N.J.
        • Anderson C.M.
        • et al.
        Multicenter, placebo-controlled trial of lorcaserin for weight management.
        N Engl J Med. 2010; 363: 245-256
        • O'Neil P.M.
        • Smith S.R.
        • Weissman N.J.
        • et al.
        Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study.
        Obesity (Silver Spring). 2012; 20: 1426-1436
        • Fidler M.C.
        • Sanchez M.
        • Raether B.
        • et al.
        A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial.
        J Clin Endocrinol Metab. 2011; 96: 3067-3077
        • Garvey W.T.
        • Ryan D.H.
        • Look M.
        • et al.
        Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study.
        Am J Clin Nutr. 2012; 95: 297-308
        • Garvey W.T.
        • Ryan D.H.
        • Henry R.
        • et al.
        Prevention of type 2 diabetes in subjects with prediabetes and metabolic syndrome treated with phentermine and topiramate extended release.
        Diabetes Care. 2014; 37: 912-921
        • Allison D.B.
        • Gadde K.M.
        • Garvey W.T.
        • et al.
        Controlled-release phentermine/topiramate in severely obese adults: A randomized controlled trial (EQUIP).
        Obesity (Silver Spring). 2012; 20: 330-342
        • Gadde K.M.
        • Allison D.B.
        • Ryan D.H.
        • et al.
        Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial.
        Lancet. 2011; 377: 1341-1352
        • Garvey W.T.
        • Ryan D.H.
        • Bohannon N.J.
        • et al.
        Weight-loss therapy in type 2 diabetes: effects of phentermine and topiramate extended-release.
        Diabetes Care. 2014; 37: 3309-3316
        • Apovian C.M.
        • Aronne L.
        • Rubino D.
        • et al.
        A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II).
        Obesity (Silver Spring). 2013; 21: 935-943
        • Hollander P.
        • Gupta A.K.
        • Plodkowski R.
        • et al.
        Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in over-weight and obese patients with type 2 diabetes.
        Diabetes Care. 2013; 36: 4022-4029
        • Wadden T.A.
        • Foreyt J.P.
        • Foster G.D.
        • et al.
        Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial.
        Obesity (Silver Spring). 2011; 19: 110-120
        • Greenway F.L.
        • Fujioka K.
        • Plodkowski R.A.
        • et al.
        Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial.
        Lancet. 2010; 376: 595-605
        • Wadden T.A.
        • Hollander P.
        • Klein S.
        • et al.
        Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE Maintenance randomized study.
        Int J Obes (Lond). 2013; 37: 1443-1451
        • Astrup A.
        • Carraro R.
        • Finer N.
        • et al.
        Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide.
        Int J Obes (Lond). 2012; 36: 843-854
        • Astrup A.
        • Rössner S.
        • Van Gaal L.
        • et al.
        Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study.
        Lancet. 2009; 374: 1606-1616
        • Pi-Sunyer X.
        • Astrup A.
        • Fujioka K.
        • et al.
        A randomized, controlled trial of 3.0 mg of liraglutide in weight management.
        N Engl J Med. 2015; 373: 11-22
        • Mechanick J.I.
        • Youdim A.
        • Jones D.B.
        • et al.
        Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery.
        Endocr Pract. 2013; 19: 337-372
        • Garber A.J.
        • Handelsman Y.
        • Einhorn D.
        • et al.
        Diagnosis and management of prediabetes in the continuum of hyperglycemia: when do the risks of diabetes begin? A consensus statement from the American College of Endocrinology and the American Association of Clinical Endocrinologists.
        Endocr Pract. 2008; 14: 933-946
        • Knowler W.C.
        • Barrett-Connor E.
        • Fowler S.E.
        • et al.
        Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.
        N Engl J Med. 2002; 346: 393-403
        • Chiasson J.L.
        • Josse R.G.
        • Gomis R.
        • et al.
        Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial.
        JAMA. 2003; 290: 486-494
        • Chiasson J.L.
        • Josse R.G.
        • Gomis R.
        • et al.
        Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial.
        Lancet. 2002; 359: 2072-2077
        • Diabetes Prevention Program Research Group
        • et al.
        10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program outcomes study [erratum in Lancet. 2009;374:2054].
        Lancet. 2009; 374: 1677-1686
        • DREAM (Diabetes REduction Assessment with rampipril and rosiglitazone Medication) Trial Investigators
        • et al.
        Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial [erratum in: Lancet. 2006;368:1770].
        Lancet. 2006; 368: 1096-1105
        • Knowler W.C.
        • Hamman R.F.
        • Edelstein S.L.
        • et al.
        Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program.
        Diabetes. 2005; 54: 1150-1156
        • DeFronzo R.A.
        • Tripathy D.
        • Schwenke D.C.
        • et al.
        Pioglitazone for diabetes prevention in impaired glucose tolerance.
        N Engl J Med. 2011; 364: 1104-1115
        • Dormandy J.A.
        • Charbonnel B.
        • Eckland D.J.
        • et al.
        Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial.
        Lancet. 2005; 366: 1279-1289
        • Kernan W.N.
        • Viscoli C.M.
        • Furie K.L.
        • et al.
        Pioglitazone after ischemic stroke or transient ischemic attack.
        N Engl J Med. 2016; 374: 1321-1331
        • Kim S.H.
        • Abbasi F.
        • Lamendola C.
        • et al.
        Benefits of liraglutide treatment in overweight and obese older individuals with prediabetes.
        Diabetes Care. 2013; 36: 3276-3282
        • Rosenstock J.
        • Klaff L.J.
        • Schwartz S.
        • et al.
        Effects of exenatide and lifestyle modification on body weight and glucose tolerance in obese subjects with and without pre-diabetes.
        Diabetes Care. 2010; 33: 1173-1175
        • Bangalore S.
        • Kumar S.
        • Lobach I.
        • Messerli F.H.
        Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and Bayesian random-effects meta-analyses of randomized trials.
        Circulation. 2011; 123 (9 p following 2810): 2799-2810
        • McBrien K.
        • Rabi D.M.
        • Campbell N.
        • et al.
        Intensive and standard blood pressure targets in patients with type 2 diabetes mellitus: systematic review and meta-analysis.
        Arch Intern Med. 2012; 172: 1296-1303
        • Sleight P.
        • Redon J.
        • Verdecchia P.
        • et al.
        Prognostic value of blood pressure in patients with high vascular risk in the ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial study.
        J Hypertens. 2009; 27: 1360-1369
        • ACCORD Study Group
        • et al.
        Effects of intensive blood-pressure control in type 2 diabetes mellitus.
        N Engl J Med. 2010; 362: 1575-1585
        • Whelton P.K.
        • He J.
        • Cutler J.A.
        • et al.
        Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials.
        JAMA. 1997; 277: 1624-1632
        • Azadbakht L.
        • Mirmiran P.
        • Esmaillzadeh A.
        • Azizi T.
        • Azizi F.
        Beneficial effects of a Dietary Approaches to Stop Hypertension eating plan on features of the metabolic syndrome.
        Diabetes Care. 2005; 28: 2823-2831
        • Buse J.B.
        • Ginsberg H.N.
        • Bakris G.L.
        • et al.
        Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association.
        Diabetes Care. 2007; 30: 162-172
        • Levitan E.B.
        • Wolk A.
        • Mittleman M.A.
        Consistency with the DASH diet and incidence of heart failure.
        Arch Intern Med. 2009; 169: 851-857
        • Liese A.D.
        • Nichols M.
        • Sun X.
        • D'Agostino Jr, R.B.
        • Haffner S.M.
        Adherence to the DASH diet is inversely associated with incidence of type 2 diabetes: the Insulin Resistance Atherosclerosis Study.
        Diabetes Care. 2009; 32: 1434-1436
        • Sacks F.M.
        • Svetkey L.P.
        • Vollmer W.M.
        • et al.
        Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group.
        N Engl J Med. 2001; 344: 3-10
        • Vollmer W.M.
        • Sacks F.M.
        • Ard J.
        • et al.
        Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-Sodium trial.
        Ann Intern Med. 2001; 135: 1019-1028
        • Corrao G.
        • Bagnardi V.
        • Zambon A.
        • La Vecchia C.
        A meta-analysis of alcohol consumption and the risk of 15 diseases.
        Prev Med. 2004; 38: 613-619
        • Costanzo S.
        • Di Castelnuovo A.
        • Donati M.B.
        • Iacoviello L.
        • de Gaetano G.
        Cardiovascular and overall mortality risk in relation to alcohol consumption in patients with cardiovascular disease.
        Circulation. 2010; 121: 1951-1959
        • Stewart K.
        Exercise and hypertension.
        in: ACSM's Resource Manual for Guidelines for Exercise Testing and Prescription. 4th ed. Lippincott, Williams & Wilkens, Baltimore, MD2001: 285-291 (In)
        • James P.A.
        • Oparil S.
        • Carter B.L.
        • et al.
        2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8).
        JAMA. 2014; 311: 507-520
        • Heart Outcomes Prevention Evaluation Study Investigators
        Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: Results of the HOPE study and MICRO-HOPE substudy. [erratum in Lancet. 2000;356:860].
        Lancet. 2000; 355: 253-259
        • Hansson L.
        • Zanchetti A.
        • Carruthers S.G.
        • et al.
        Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group.
        Lancet. 1998; 351: 1755-1762
        • Dahlöf B.
        • Devereux R.B.
        • Kjeldsen S.E.
        • et al.
        Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol.
        Lancet. 2002; 359: 995-1003
        • Rahman M.
        • Pressel S.
        • Davis B.R.
        • et al.
        Renal outcomes in high-risk hypertensive patients treated with an angiotensin-converting enzyme inhibitor or a calcium channel blocker vs a diuretic: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT).
        Arch Intern Med. 2005; 165: 936-946
        • Telmisartan Randomised AssessmeNt Study in ACE iNtolerant subjects with cardiovascular Disease (TRANSCEND) Investigators
        • et al.
        Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial.
        Lancet. 2008; 372: 1174-1183
        • Pahor M.
        • Psaty B.M.
        • Alderman M.H.
        • Applegate W.B.
        • Williamson J.D.
        • Furberg C.D.
        Therapeutic benefits of ACE inhibitors and other antihypertensive drugs in patients with type 2 diabetes.
        Diabetes Care. 2000; 23: 888-892
        • Jamerson K.
        • Weber M.A.
        • Bakris G.L.
        • et al.
        Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients.
        N Engl J Med. 2008; 359: 2417-2428
        • Parving H.H.
        • Brenner B.M.
        • McMurray J.J.
        • et al.
        Cardiorenal end points in a trial of aliskiren for type 2 diabetes.
        N Engl J Med. 2012; 367: 2204-2213
        • Fried L.F.
        • Emanuele N.
        • Zhang J.H.
        • et al.
        Combined angiotensin inhibition for the treatment of diabetic nephropathy.
        N Engl J Med. 2013; 369: 1892-1903
        • Benjamin E.J.
        • Virani S.S.
        • Callaway C.W.
        • et al.
        Heart disease and stroke statistics—2018 update: a report from the American Heart Association.
        Circulation. 2018; 137: e67-e492
        • National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults
        Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report.
        Circulation. 2002; 106: 3143-3421
        • Boekholdt S.M.
        • Hovingh G.K.
        • Mora S.
        • et al.
        Very low levels of atherogenic lipoproteins and the risk for cardiovascular events: a meta-analysis of statin trials.
        J Am Coll Cardiol. 2014; 64: 485-494
        • Cannon C.P.
        • Blazing M.A.
        • Giugliano R.P.
        • et al.
        Ezetimibe added to statin therapy after acute coronary syndromes.
        N Engl J Med. 2015; 372: 2387-2397
        • Heart Protection Study Collaborative Group
        MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial.
        Lancet. 2002; 360: 7-22
        • Ridker P.M.
        • Morrow D.A.
        • Rose L.M.
        • Rifai N.
        • Cannon C.P.
        • Braunwald E.
        Relative efficacy of atorvastatin 80 mg and pravastatin 40 mg in achieving the dual goals of low-density lipoprotein cholesterol <70 mg/dl and C-reactive protein <2 mg/l: An analysis of the PROVE-IT TIMI-22 trial.
        J Am Coll Cardiol. 2005; 45: 1644-1648
        • Barter P.J.
        • Ballantyne C.M.
        • Carmena R.
        • et al.
        Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: report of the Thirty-Person/Ten-Country panel.
        J Intern Med. 2006; 259: 247-258
        • Brunzell J.D.
        • Davidson M.
        • Furberg C.D.
        • et al.
        Lipoprotein management in patients with cardiometabolic risk: consensus statement from the American Diabetes Association and the American College of Cardiology Foundation.
        Diabetes Care. 2008; 31: 811-822
        • Grundy S.M.
        • Cleeman J.I.
        • Merz C.N.
        • et al.
        Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines.
        Circulation. 2004; 110: 227-239
        • Lloyd-Jones D.M.
        • Wilson P.W.
        • Larson M.G.
        • et al.
        Framingham risk score and prediction of lifetime risk for coronary heart disease.
        Am J Cardiol. 2004; 94: 20-24
        • McClelland R.L.
        • Jorgensen N.W.
        • Budoff M.
        • et al.
        10-year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study).
        J Am Coll Cardiol. 2015; 66: 1643-1653
        • Ridker P.M.
        • Buring J.E.
        • Rifai N.
        • Cook N.R.
        Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds risk score.
        JAMA. 2007; 297: 611-619
        • Sever P.S.
        • Dahlöf B.
        • Poulter N.R.
        • et al.
        Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial.
        Lancet. 2003; 361: 1149-1158
        • Shepherd J.
        • Blauw G.J.
        • Murphy M.B.
        • et al.
        Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial.
        Lancet. 2002; 360: 1623-1630
        • Smith Jr, S.C.
        • Allen J.
        • Blair S.N.
        • et al.
        AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute.
        Circulation. 2006; 113: 2363-2372
        • Stevens R.J.
        • Kothari V.
        • Adler A.I.
        • Stratton I.M.
        The UKPDS risk engine: a model for the risk of coronary heart disease in type II diabetes (UKPDS 56).
        Clin Sci (Lond). 2001; 101: 671-679
        • Stone N.J.
        Lipid management: current diet and drug treatment options.
        Am J Med. 1996; 101 (4A48S) (discussion 4A48S–4A49S): 4A40S
        • Weiner D.E.
        • Tighiouart H.
        • Amin M.G.
        • et al.
        Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies.
        J Am Soc Nephrol. 2004; 15: 1307-1315
        • Jellinger P.S.
        • Handelsman Y.
        • Rosenblit P.D.
        • et al.
        American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of atherosclerosis.
        Endocr Pract. 2017; 23: 1-87
        • Toth P.P.
        • Grabner M.
        • Punekar R.S.
        • Quimbo R.A.
        • Cziraky M.J.
        • Jacobson T.A.
        Cardiovascular risk in patients achieving low-density lipoprotein cholesterol and particle targets.
        Atherosclerosis. 2014; 235: 585-591
        • Otvos J.D.
        • Mora S.
        • Shalaurova I.
        • Greenland P.
        • Mackey R.H.
        • Goff Jr., D.C.
        Clinical implications of discordance between low-density lipoprotein cholesterol and particle number.
        J Clin Lipidol. 2011; 5: 105-113
        • Colhoun H.M.
        • Betteridge D.J.
        • Durrington P.N.
        • et al.
        Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial.
        Lancet. 2004; 364: 685-696
        • Knopp R.H.
        • d'Emden M.
        • Smilde J.G.
        • Pocock S.J.
        Efficacy and safety of atorvastatin in the prevention of cardiovascular end points in subjects with type 2 diabetes: the Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in Non-Insulin-Dependent Diabetes Mellitus (ASPEN).
        Diabetes Care. 2006; 29: 1478-1485
        • Cholesterol Treatment Trialists (CTT) Collaboration
        • et al.
        Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials.
        Lancet. 2010; 376: 1670-1681
        • Cholesterol Treatment Trialists (CTT) Collaborators
        • et al.
        Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis.
        Lancet. 2008; 371: 117-125
        • Athyros V.G.
        • Papageorgiou A.A.
        • Symeonidis A.N.
        • et al.
        Early benefit from structured care with atorvastatin in patients with coronary heart disease and diabetes mellitus.
        Angiology. 2003; 54: 679-690
        • Ahmed S.
        • Cannon C.P.
        • Murphy S.A.
        • Braunwald E.
        Acute coronary syndromes and diabetes: Is intensive lipid lowering beneficial? Results of the PROVE IT-TIMI 22 trial.
        Eur Heart J. 2006; 27: 2323-2329
        • de Lemos J.A.
        • Blazing M.A.
        • Wiviott S.D.
        • et al.
        Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z Trial.
        JAMA. 2004; 292: 1307-1316
        • Shepherd J.
        • Barter P.
        • Carmena R.
        • et al.
        Effect of lowering LDL cholesterol substantially below currently recommended levels in patients with coronary heart disease and diabetes: the Treating to New Targets (TNT) study.
        Diabetes Care. 2006; 29: 1220-1226
        • Cannon C.P.
        • Steinberg B.A.
        • Murphy S.A.
        • Mega J.L.
        • Braunwald E.
        Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy.
        J Am Coll Cardiol. 2006; 48: 438-445
        • Sniderman A.D.
        Differential response of cholesterol and particle measures of atherogenic lipoproteins to LDL-lowering therapy: implications for clinical practice.
        J Clin Lipidol. 2008; 2: 36-42
        • Bruckert E.
        • Hayem G.
        • Dejager S.
        • Yau C.
        • Bégaud B.
        Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—the PRIMO study.
        Cardiovasc Drugs Ther. 2005; 19: 403-414
        • Masuda D.
        • Nakagawa-Toyama Y.
        • Nakatani K.
        • et al.
        Ezetimibe improves postprandial hyperlipidaemia in patients with type IIB hyperlipidaemia.
        Eur J Clin Invest. 2009; 39: 689-698
        • Blom D.J.
        • Hala T.
        • Bolognese M.
        • et al.
        A 52-week placebo-controlled trial of evolocumab in hyperlipidemia.
        N Engl J Med. 2014; 370: 1809-1819
        • Robinson J.G.
        • Farnier M.
        • Krempf M.
        • et al.
        Efficacy and safety of alirocumab in reducing lipids and cardiovascular events.
        N Engl J Med. 2015; 372: 1489-1499
        • Sabatine M.S.
        • Giugliano R.P.
        • Wiviott S.D.
        • et al.
        Efficacy and safety of evolocumab in reducing lipids and cardiovascular events.
        N Engl J Med. 2015; 372: 1500-1509
        • Ramasamy I.
        Recent advances in physiological lipoprotein metabolism.
        Clin Chem Lab Med. 2014; 52: 1695-1727
        • Zhang X.L.
        • Zhu Q.Q.
        • Zhu L.
        • et al.
        Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials.
        BMC Med. 2015; 13: 123
        • Verbeek R.
        • Stoekenbroek R.M.
        • Hovingh G.K.
        PCSK9 inhibitors: novel therapeutic agents for the treatment of hypercholesterolemia.
        Eur J Pharmacol. 2015; 763: 38-47
        • Bays H.
        • Gaudet D.
        • Weiss R.
        • et al.
        Alirocumab as add-on to atorvastatin versus other lipid treatment strategies: ODYSSEY OPTIONS I randomized trial.
        J Clin Endocrinol Metab. 2015; 100: 3140-3148
        • Sabatine M.S.
        • Giugliano R.P.
        • Keech A.C.
        • et al.
        Evolocumab and clinical outcomes in patients with cardiovascular disease.
        N Engl J Med. 2017; 376: 1713-1722
      1. StegPG.Evaluation of cardiovascular outcomes after an acute coronary syndrome during treatment with alirocumab—ODYSSEY OUTCOMES. American College of Cardiology Annual Scientific Session (ACC 2018). Orlando, FL; 2018.

        • Robinson J.G.
        • Farnier M.
        • Krempf M.
        • et al.
        Efficacy and safety of alirocumab in reducing lipids and cardiovascular events.
        N Engl J Med. 2015; 372: 1489-1499
      2. ColhounHM, GinsbergHN, LeiterLA, et al. Efficacy and safety of alirocumab in individuals with diabetes: analyses from the ODYSSEY long term study. 51st Annual Meeting of the European Association for the Study of Diabetes. Stockholm, Sweden; 2015.

        • Davidson M.H.
        • Dillon M.A.
        • Gordon B.
        • et al.
        Colesevelam hydrochloride (Cholestagel): a new, potent bile acid sequestrant associated with a low incidence of gastrointestinal side effects.
        Arch Intern Med. 1999; 159: 1893-1900
        • Handelsman Y.
        Role of bile acid sequestrants in the treatment of type 2 diabetes.
        Diabetes Care. 2011; 34: S244-S250
        • Rosenson R.S.
        • Abby S.L.
        • Jones M.R.
        Colesevelam HCL effects on atherogenic lipoprotein subclasses in subjects with type 2 diabetes.
        Atherosclerosis. 2009; 204: 342-344
        • Aggarwal S.
        • Loomba R.S.
        • Arora R.R.
        Efficacy of colesevelam on lowering glycemia and lipids.
        J Cardiovasc Pharmacol. 2012; 59: 198-205
        • Frick M.H.
        • Elo O.
        • Haapa K.
        • et al.
        Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease.
        N Engl J Med. 1987; 317: 1237-1245
        • Rubins H.B.
        • Robins S.J.
        • Collins D.
        • et al.
        Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial study group.
        N Engl J Med. 1999; 341: 410-418
        • ACCORD Study Group
        • et al.
        Effects of combination lipid therapy in type 2 diabetes mellitus.
        N Engl J Med. 2010; 362: 1563-1574
        • Manninen V.
        • Tenkanen L.
        • Koskinen P.
        • et al.
        Joint effects of serum triglyceride and LDL cholesterol and hdl cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment.
        Circulation. 1992; 85: 37-45
        • Bruckert E.
        • Labreuche J.
        • Deplanque D.
        • Touboul P.J.
        • Amarenco P.
        Fibrates effect on cardiovascular risk is greater in patients with high triglyceride levels or atherogenic dyslipidemia profile: a systematic review and meta-analysis.
        J Cardiovasc Pharmacol. 2011; 57: 267-272
        • Scott R.
        • O'Brien R.
        • Fulcher G.
        • et al.
        Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study.
        Diabetes Care. 2009; 32: 493-498
        • Sacks F.M.
        • Carey V.J.
        • Fruchart J.C.
        Combination lipid therapy in type 2 diabetes.
        N Engl J Med. 2010; 363 (author reply 694–695): 692-694
        • Lee M.
        • Saver J.L.
        • Towfighi A.
        • Chow J.
        • Ovbiagele B.
        Efficacy of fibrates for cardiovascular risk reduction in persons with atherogenic dyslipidemia: a meta-analysis.
        Atherosclerosis. 2011; 217: 492-498
        • Carlson L.A.
        Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review.
        J Intern Med. 2005; 258: 94-114
        • Pan J.
        • Lin M.
        • Kesala R.L.
        • Van J.
        • Charles M.A.
        Niacin treatment of the atherogenic lipid profile and Lp(a) in diabetes.
        Diabetes Obes Metab. 2002; 4: 255-261
        • Boden W.E.
        • Probstfield J.L.
        • Anderson T.
        • et al.
        Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy.
        N Engl J Med. 2011; 365: 2255-2267
        • HPS2-THRIVE Collaborative Group
        • et al.
        Effects of extended-release niacin with laropiprant in high-risk patients.
        N Engl J Med. 2014; 371: 203-212
        • Lavigne P.M.
        • Karas R.H.
        The current state of niacin in cardiovascular disease prevention: a systematic review and meta-regression.
        J Am Coll Cardiol. 2013; 61: 440-446
        • Canner P.L.
        • Furberg C.D.
        • Terrin M.L.
        • McGovern M.E.
        Benefits of niacin by glycemic status in patients with healed myocardial infarction (from the Coronary Drug Project).
        Am J Cardiol. 2005; 95: 254-257
        • Yokoyama M.
        • Origasa H.
        • Matsuzaki M.
        • et al.
        Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis.
        Lancet. 2007; 369: 1090-1098
        • Oikawa S.
        • Yokoyama M.
        • Origasa H.
        • et al.
        Suppressive effect of EPA on the incidence of coronary events in hypercholesterolemia with impaired glucose metabolism: sub-analysis of the Japan EPA Lipid Intervention Study (JELIS).
        Atherosclerosis. 2009; 206: 535-539
        • Saito Y.
        • Yokoyama M.
        • Origasa H.
        • et al.
        Effects of EPA on coronary artery disease in hypercholesterolemic patients with multiple risk factors: sub-analysis of primary prevention cases from the Japan EPA Lipid Intervention Study (JELIS).
        Atherosclerosis. 2008; 200: 135-140
        • Roncaglioni M.C.
        • Tombesi M.
        • Avanzini F.
        • et al.
        N-3 fatty acids in patients with multiple cardiovascular risk factors.
        N Engl J Med. 2013; 368: 1800-1808
        • Bosch J.
        • Gerstein H.C.
        • Dagenais G.R.
        • et al.
        N-3 fatty acids and cardiovascular outcomes in patients with dysglycemia.
        N Engl J Med. 2012; 367: 309-318
        • Bhatt D.L.
        • Steg P.G.
        • Miller M.
        • et al.
        Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia.
        N Engl J Med. 10 Nov 2018; (doi: 10.1056/NEJMoa1812792. &lsqb;Epub ahead of print])
        • Hegele R.A.
        • Ginsberg H.N.
        • Chapman M.J.
        • et al.
        The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management.
        Lancet Diabetes Endocrinol. 2014; 2: 655-666
        • Christian J.B.
        • Arondekar B.
        • Buysman E.K.
        • Jacobson T.A.
        • Snipes R.G.
        • Horwitz R.I.
        Determining triglyceride reductions needed for clinical impact in severe hypertriglyceridemia.
        Am J Med. 2014; 127: 36-44.e1
        • ADVANCE Collaborative Group
        • et al.
        Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2008; 358: 2560-2572
        • Ismail-Beigi F.
        • Craven T.
        • Banerji M.A.
        • et al.
        Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial.
        Lancet. 2010; 376: 419-430
        • ACCORD Study Group
        • et al.
        Effects of medical therapies on retinopathy progression in type 2 diabetes.
        N Engl J Med. 2010; 363: 233-244
        • Action to Control Cardiovascular Risk in Diabetes Study Group
        • et al.
        Effects of intensive glucose lowering in type 2 diabetes.
        N Engl J Med. 2008; 358: 2545-2559
        • Riddle M.C.
        • Ambrosius W.T.
        • Brillon D.J.
        • et al.
        Epidemiologic relationships between A1c and all-cause mortality during a median 3.4-year follow-up of glycemic treatment in the ACCORD trial.
        Diabetes Care. 2010; 33: 983-990
        • Pop-Busui R.
        • Evans G.W.
        • Gerstein H.C.
        • et al.
        Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial.
        Diabetes Care. 2010; 33: 1578-1584
        • Vinik A.
        The approach to the management of the patient with neuropathic pain.
        J Clin Endocrinol Metab. 2010; 95: 4802-4811
        • Veterans Affairs Diabetes Trial Investigators
        • et al.
        Glucose control and vascular complications in veterans with type 2 diabetes.
        N Engl J Med. 2009; 360: 129-139
        • Hayward R.A.
        • Reaven P.D.
        • Wiitala W.L.
        • et al.
        Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2015; 372: 2197-2206
        • ACCORD Study Group
        • et al.
        Long-term effects of intensive glucose lowering on cardiovascular outcomes.
        N Engl J Med. 2011; 364: 818-828
        • Bonds D.E.
        • Miller M.E.
        • Bergenstal R.M.
        • et al.
        The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study.
        BMJ. 2010; 340 (b4909)
        • Bailey C.J.
        • Turner R.C.
        Metformin.
        N Engl J Med. 1996; 334: 574-579
        • Kahn S.E.
        • Haffner S.M.
        • Heise M.A.
        • et al.
        Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy.
        N Engl J Med. 2006; 355: 2427-2443
        • Roumie C.L.
        • Hung A.M.
        • Greevy R.A.
        • et al.
        Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study.
        Ann Intern Med. 2012; 157: 601-610
      3. Glucophage (metformin hydrochloride) tablets. Bristol-Myers Squibb Co, Princeton, NJ2017
        • U.S. Food and Drug Administration
        FDA Drug Safety Communication: FDA revises warnings regarding use of the diabetes medicine metformin in certain patients with reduced kidney function.
        U.S. Food and Drug Administration, Silver Spring, MD2016 (Available at: Accessed December 20, 2018.189)
        • Kidney Disease: Improving Global Outcomes CKD Work Group
        KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease.
        Kidney Int Suppl. 2013; 3: 1-150
        • Lipska K.J.
        • Bailey C.J.
        • Inzucchi S.E.
        Use of metformin in the setting of mild-to-moderate renal insufficiency.
        Diabetes Care. 2011; 34: 1431-1437
        • Reinstatler L.
        • Qi Y.P.
        • Williamson R.S.
        • Garn J.V.
        • Oakley Jr., G.P.
        Association of biochemical B12 deficiency with metformin therapy and vitamin B12 supplements: the National Health and Nutrition Examination Survey, 1999–2006.
        Diabetes Care. 2012; 35: 327-333
        • Leishear K.
        • Boudreau R.M.
        • Studenski S.A.
        • et al.
        Relationship between vitamin B12 and sensory and motor peripheral nerve function in older adults.
        J Am Geriatr Soc. 2012; 60: 1057-1063
        • Wile D.J.
        • Toth C.
        Association of metformin, elevated homocysteine, and methylmalonic acid levels and clinically worsened diabetic peripheral neuropathy.
        Diabetes Care. 2010; 33: 156-161
        • Singh A.K.
        • Kumar A.
        • Karmakar D.
        • Jha R.K.
        Association of B12 deficiency and clinical neuropathy with metformin use in type 2 diabetes patients.
        J Postgrad Med. 2013; 59: 253-257
        • Deacon C.F.
        • Mannucci E.
        • Ahrén B.
        Glycaemic efficacy of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors as add-on therapy to metformin in subjects with type 2 diabetes—a review and meta analysis.
        Diabetes Obes Metab. 2012; 14: 762-767
        • Sun F.
        • Wu S.
        • Wang J.
        • et al.
        Effect of glucagon-like peptide-1 receptor agonists on lipid profiles among type 2 diabetes: a systematic review and network meta-analysis.
        Clin Ther. 2015; 37: 225-241.e8
        • Marso S.P.
        • Daniels G.H.
        • Brown-Frandsen K.
        • et al.
        Liraglutide and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2016; 375: 311-322
      4. Victoza (liraglutide rDNA origin) injection prescribing information. Novo Nordisk, Inc., Princeton, NJ2017
        • Marso S.P.
        • Bain S.C.
        • Consoli A.
        • et al.
        Semaglutide and cardiovascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2016; 375: 1834-1844
      5. FrankiL.Dulaglutide meets primary endpoint in REWIND. Clinical Endocrinology News. Parsippany, NJ: Frontline Medical Communications Inc.

        • Pfeffer M.A.
        • Claggett B.
        • Diaz R.
        • et al.
        Lixisenatide in patients with type 2 diabetes and acute coronary syndrome.
        N Engl J Med. 2015; 373: 2247-2257
        • Holman R.R.
        • Bethel M.A.
        • Mentz R.J.
        • et al.
        Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2017; 377: 1228-1239
        • Leech C.A.
        • Dzhura I.
        • Chepurny O.G.
        • Schwede F.
        • Genieser H.G.
        • Holz G.G.
        Facilitation of ss-cell K(ATP) channel sulfonylurea sensitivity by a cAMP analog selective for the cAMP-regulated guanine nucleotide exchange factor Epac.
        Islets. 2010; 2: 72-81
        • Davies M.
        • Chatterjee S.
        • Khunti K.
        The treatment of type 2 diabetes in the presence of renal impairment: what we should know about newer therapies.
        Clin Pharmacol. 2016; 8: 61-81
        • Parks M.
        • Rosebraugh C.
        Weighing risks and benefits of liraglutide—the FDA's review of a new antidiabetic therapy.
        N Engl J Med. 2010; 362: 774-777
        • Zinman B.
        • Wanner C.
        • Lachin J.M.
        • et al.
        Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.
        N Engl J Med. 2015; 373: 2117-2128
        • Neal B.
        • Perkovic V.
        • Mahaffey K.W.
        • et al.
        Canagliflozin and cardiovascular and renal events in type 2 diabetes.
        N Engl J Med. 2017; 377: 644-657
        • Wiviott S.D.
        • Raz I.
        • Bonaca M.P.
        • et al.
        Dapagliflozin and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 10 Nov 2018; (doi: 10.1056/NEJMoa1812389. &lsqb;Epub ahead of print])
      6. Jardiance (empagliflozin) prescribing information. Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT2016
        • Bloomgarden Z.
        Sodium glucose transporter 2 inhibition: a new approach to diabetes treatment.
        J Diabetes. 2013; 5: 225-227
        • Peters A.L.
        • Buschur E.O.
        • Buse J.B.
        • Cohan P.
        • Diner J.C.
        • Hirsch I.B.
        Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition.
        Diabetes Care. 2015; 38: 1687-1693
        • Nauck M.A.
        Update on developments with SGLT2 inhibitors in the management of type 2 diabetes.
        Drug Des Devel Ther. 2014; 8: 1335-1380
      7. Invokana (canagliflozin) prescribing information. Janssen Pharmaceuticals, Inc., Titusville, NJ2018
        • Fadini G.P.
        • Bonora B.M.
        • Avogaro A.
        SGLT2 inhibitors and diabetic ketoacidosis: data from the FDA Adverse Event Reporting System.
        Diabetologia. 2017; 60: 1385-1389
        • Umpierrez G.E.
        Diabetes: SGLT2 inhibitors and diabetic ketoacidosis—a growing concern.
        Nat Rev Endocrinol. 2017; 13: 441-442
        • Erondu N.
        • Desai M.
        • Ways K.
        • Meininger G.
        Diabetic ketoacidosis and related events in the canagliflozin type 2 diabetes clinical program.
        Diabetes Care. 2015; 38: 1680-1686
        • Handelsman Y.
        • Henry R.R.
        • Bloomgarden Z.T.
        • et al.
        American Association of Clinical Endocrinologists and American College of Endocrinology position statement on the association of SGLT-2 inhibitors and diabetic ketoacidosis.
        Endocr Pract. 2016; 22: 753-762
        • Deacon C.F.
        Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review.
        Diabetes Obes Metab. 2011; 13: 7-18
        • Ahrén B.
        Clinical results of treating type 2 diabetic patients with sitagliptin, vildagliptin or saxagliptin—diabetes control and potential adverse events.
        Best Pract Res Clin Endocrinol Metab. 2009; 23: 487-498
        • White W.B.
        • Cannon C.P.
        • Heller S.R.
        • et al.
        Alogliptin after acute coronary syndrome in patients with type 2 diabetes.
        N Engl J Med. 2013; 369: 1327-1335
        • Scirica B.M.
        • Bhatt D.L.
        • Braunwald E.
        • et al.
        Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus.
        N Engl J Med. 2013; 369: 1317-1326
        • Green J.B.
        • Bethel M.A.
        • Armstrong P.W.
        • et al.
        Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2015; 373: 232-242
        • Zannad F.
        • Cannon C.P.
        • Cushman W.C.
        • et al.
        Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial.
        Lancet. 2015; 385: 2067-2076
        • Scirica B.M.
        • Braunwald E.
        • Raz I.
        • et al.
        Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial.
        Circulation. 2014; 130: 1579-1588
        • DeFronzo R.A.
        From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus.
        Diabetes. 2009; 58: 773-795
        • Lincoff A.M.
        • Wolski K.
        • Nicholls S.J.
        • Nissen S.E.
        Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials.
        JAMA. 2007; 298: 1180-1188
        • Home P.D.
        • Pocock S.J.
        • Beck-Nielsen H.
        • et al.
        Rosiglitazone Evaluated for Cardiovascular Outcomes in Oral Agent Combination Therapy for Type 2 Diabetes (RECORD): a multi-centre, randomised, open-label trial.
        Lancet. 2009; 373: 2125-2135
        • Hiatt W.R.
        • Kaul S.
        • Smith R.J.
        The cardiovascular safety of diabetes drugs—insights from the rosiglitazone experience.
        N Engl J Med. 2013; 369: 1285-1287
        • Bolen S.
        • Feldman L.
        • Vassy J.
        • et al.
        Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus &lsqb;erratum in Ann Intern Med. 2007;147:887].
        Ann Intern Med. 2007; 147: 386-399
        • Kahn S.E.
        • Zinman B.
        • Lachin J.M.
        • et al.
        Rosiglitazone-associated fractures in type 2 diabetes: an analysis from A Diabetes Outcome Progression Trial (ADOPT).
        Diabetes Care. 2008; 31: 845-851
        • Schwartz A.V.
        • Sellmeyer D.E.
        • Vittinghoff E.
        • et al.
        Thiazolidinedione use and bone loss in older diabetic adults.
        J Clin Endocrinol Metab. 2006; 91: 3349-3354
        • Ferwana M.
        • Firwana B.
        • Hasan R.
        • et al.
        Pioglitazone and risk of bladder cancer: a meta-analysis of controlled studies.
        Diabet Med. 2013; 30: 1026-1032
        • Viscoli C.M.
        • Inzucchi S.E.
        • Young L.H.
        • et al.
        Pioglitazone and risk for bone fracture: safety data from a randomized clinical trial.
        J Clin Endocrinol Metab. 2017; 102: 914-922
        • Lewis J.D.
        • Habel L.A.
        • Quesenberry C.P.
        • et al.
        Pioglitazone use and risk of bladder cancer and other common cancers in persons with diabetes.
        JAMA. 2015; 314: 265-277
        • Rosak C.
        • Mertes G.
        Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations.
        Diabetes Metab Syndr Obes. 2012; 5: 357-367
        • Hanefeld M.
        • Cagatay M.
        • Petrowitsch T.
        • Neuser D.
        • Petzinna D.
        • Rupp M.
        Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: meta-analysis of seven long-term studies.
        Eur Heart J. 2004; 25: 10-16
        • Phung O.J.
        • Scholle J.M.
        • Talwar M.
        • Coleman C.I.
        Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes.
        JAMA. 2010; 303: 1410-1418
        • Forst T.
        • Hanefeld M.
        • Jacob S.
        • et al.
        Association of sulphonylurea treatment with all-cause and cardiovascular mortality: a systematic review and meta-analysis of observational studies.
        Diab Vasc Dis Res. 2013; 10: 302-314
        • Fonseca V.A.
        • Handelsman Y.
        • Staels B.
        Colesevelam lowers glucose and lipid levels in type 2 diabetes: the clinical evidence.
        Diabetes Obes Metab. 2010; 12: 384-392
        • Defronzo R.A.
        Bromocriptine: a sympatholytic, D2-dopamine agonist for the treatment of type 2 diabetes.
        Diabetes Care. 2011; 34: 789-794
        • Gaziano J.M.
        • Cincotta A.H.
        • O'Connor C.M.
        • et al.
        Randomized clinical trial of quick-release bromocriptine among patients with type 2 diabetes on overall safety and cardiovascular outcomes.
        Diabetes Care. 2010; 33: 1503-1508
        • Gaziano J.M.
        • Cincotta A.H.
        • Vinik A.
        • Blonde L.
        • Bohannon N.
        • Scranton R.
        Effect of bromocriptine-QR (a quick-release formulation of bromocriptine mesylate) on major adverse cardiovascular events in type 2 diabetes subjects.
        J Am Heart Assoc. 2012; 1 (e002279)
        • Devries J.H.
        • Bain S.C.
        • Rodbard H.W.
        • et al.
        Sequential intensification of metformin treatment in type 2 diabetes with liraglutide followed by randomized addition of basal insulin prompted by A1C targets.
        Diabetes Care. 2012; 35: 1446-1454
        • Rosenstock J.
        • Rodbard H.W.
        • Bain S.C.
        • et al.
        One-year sustained glycemic control and weight reduction in type 2 diabetes after addition of liraglutide to metformin followed by insulin detemir according to HbA1c target.
        J Diabetes Complications. 2013; 27: 492-500
        • Insulin Glargine Study Investigators
        The Treat-to-Target Trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients.
        Diabetes Care. 2003; 26: 3080-3086
        • Hermansen K.
        • Davies M.
        • Derezinski T.
        • Martinez Ravn G.
        • Clauson P.
        • Home P.
        A 26-week, randomized, parallel, treat-to-target trial comparing insulin detemir with NPH insulin as addon therapy to oral glucose-lowering drugs in insulin-naive people with type 2 diabetes.
        Diabetes Care. 2006; 29: 1269-1274
        • Blackberry I.D.
        • Furler J.S.
        • Ginnivan L.E.
        • et al.
        An exploratory trial of basal and prandial insulin initiation and titration for type 2 diabetes in primary care with adjunct retrospective continuous glucose monitoring: INITIATION study.
        Diabetes Res Clin Pract. 2014; 106: 247-255
        • Rosenstock J.
        • Dailey G.
        • Massi-Benedetti M.
        • Fritsche A.
        • Lin Z.
        • Salzman A.
        Reduced hypoglycemia risk with insulin glargine: a meta-analysis comparing insulin glargine with human NPH insulin in type 2 diabetes.
        Diabetes Care. 2005; 28: 950-955
        • Monami M.
        • Marchionni N.
        • Mannucci E.
        Long-acting insulin analogues versus NPH human insulin in type 2 diabetes: a meta-analysis.
        Diabetes Res Clin Pract. 2008; 81: 184-189
        • Home P.D.
        • Fritsche A.
        • Schinzel S.
        • Massi-Benedetti M.
        Meta-analysis of individual patient data to assess the risk of hypoglycaemia in people with type 2 diabetes using NPH insulin or insulin glargine.
        Diabetes Obes Metab. 2010; 12: 772-779
        • Marso S.P.
        • McGuire D.K.
        • Zinman B.
        • et al.
        Efficacy and safety of degludec versus glargine in type 2 diabetes.
        N Engl J Med. 2017; 377: 723-732
        • Heise T.
        • Hövelmann U.
        • Nosek L.
        • Hermanski L.
        • Bøttcher S.G.
        • Haahr H.
        Comparison of the pharmacokinetic and pharmacodynamic profiles of insulin degludec and insulin glargine.
        Expert Opin Drug Metab Toxicol. 2015; 11: 1193-1201
        • Heise T.
        • Nørskov M.
        • Nosek L.
        • Kaplan K.
        • Famulla S.
        • Haahr H.L.
        Insulin degludec: Lower day-to-day and within-day variability in pharmacodynamic response compared with insulin glargine 300 U/mL in type 1 diabetes.
        Diabetes Obes Metab. 2017; 19: 1032-1039
        • Becker R.H.
        • Dahmen R.
        • Bergmann K.
        • Lehmann A.
        • Jax T.
        • Heise T.
        New insulin glargine 300 units/mL provides a more even activity profile and prolonged glycemic control at steady state compared with insulin glargine 100 units/mL.
        Diabetes Care. 2015; 38: 637-643
        • Riddle M.C.
        • Bolli G.B.
        • Ziemen M.
        • Muehlen-Bartmer I.
        • Bizet F.
        • Home P.D.
        New insulin glargine 300 units/mL versus glargine 100 units/mL in people with type 2 diabetes using basal and mealtime insulin: glucose control and hypoglycemia in a 6-month randomized controlled trial (EDITION 1).
        Diabetes Care. 2014; 37: 2755-2762
        • Garber A.J.
        • King A.B.
        • Del Prato S.
        • et al.
        Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 2 diabetes (BEGIN Basal-Bolus Type 2): a phase 3, randomised, open-label, treat-to-target non-inferiority trial.
        Lancet. 2012; 379: 1498-1507
        • Gough S.C.
        • Bhargava A.
        • Jain R.
        • Mersebach H.
        • Rasmussen S.
        • Bergenstal R.M.
        Low-volume insulin degludec 200 units/mL once daily improves glycemic control similarly to insulin glargine with a low risk of hypoglycemia in insulin-naive patients with type 2 diabetes: a 26-week, randomized, controlled, multinational, treat-to-target trial: The BEGIN LOW VOLUME trial.
        Diabetes Care. 2013; 36: 2536-2542
        • Meneghini L.
        • Atkin S.L.
        • Gough S.C.
        • et al.
        The efficacy and safety of insulin degludec given in variable once-daily dosing intervals compared with insulin glargine and insulin degludec dosed at the same time daily: a 26-week, randomized, open-label, parallel-group, treat-to-target trial in individuals with type 2 diabetes.
        Diabetes Care. 2013; 36: 858-864
        • Zinman B.
        • Philis-Tsimikas A.
        • Cariou B.
        • et al.
        Insulin degludec versus insulin glargine in insulin-naive patients with type 2 diabetes: a 1-year, randomized, treat-to-target trial (BEGIN Once Long).
        Diabetes Care. 2012; 35: 2464-2471
        • Janka H.U.
        • Plewe G.
        • Riddle M.C.
        • Kliebe-Frisch C.
        • Schweitzer M.A.
        • Yki-Järvinen H.
        Comparison of basal insulin added to oral agents versus twice-daily premixed insulin as initial insulin therapy for type 2 diabetes.
        Diabetes Care. 2005; 28: 254-259
        • Tunis S.L.
        • Sauriol L.
        • Minshall M.E.
        Cost effectiveness of insulin glargine plus oral antidiabetes drugs compared with premixed insulin alone in patients with type 2 diabetes mellitus in Canada.
        Appl Health Econ Health Policy. 2010; 8: 267-280
        • Yki-Järvinen H.
        • Kauppila M.
        • Kujansuu E.
        • et al.
        Comparison of insulin regimens in patients with non-insulin-dependent diabetes mellitus.
        N Engl J Med. 1992; 327: 1426-1433
        • Wilding J.P.
        • Woo V.
        • Soler N.G.
        • et al.
        Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial.
        Ann Intern Med. 2012; 156: 405-415
        • Rosenstock J.
        • Jelaska A.
        • Frappin G.
        • et al.
        Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes.
        Diabetes Care. 2014; 37: 1815-1823
        • Barnett A.H.
        • Charbonnel B.
        • Donovan M.
        • Fleming D.
        • Chen R.
        Effect of saxagliptin as add-on therapy in patients with poorly controlled type 2 diabetes on insulin alone or insulin combined with metformin.
        Curr Med Res Opin. 2012; 28: 513-523
        • Buse J.B.
        • Bergenstal R.M.
        • Glass L.C.
        • et al.
        Use of twice-daily exenatide in basal insulin-treated patients with type 2 diabetes: a randomized, controlled trial.
        Ann Intern Med. 2011; 154: 103-112
        • Russell-Jones D.
        • Vaag A.
        • Schmitz O.
        • et al.
        Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 Met+Su): a randomised controlled trial.
        Diabetologia. 2009; 52: 2046-2055
        • Vilsbøll T.
        • Rosenstock J.
        • Yki-Järvinen H.
        • et al.
        Efficacy and safety of sitagliptin when added to insulin therapy in patients with type 2 diabetes.
        Diabetes Obes Metab. 2010; 12: 167-177
        • Hirsch I.B.
        Insulin analogues.
        N Engl J Med. 2005; 352: 174-183
        • McGill J.B.
        • Ahn D.
        • Edelman S.V.
        • Kilpatrick C.R.
        • Santos Cavaiola T.
        Making insulin accessible: does inhaled insulin fill an unmet need?.
        Adv Ther. 2016; 33: 1267-1278
        • Lipska K.J.
        • Hirsch I.B.
        • Riddle M.C.
        Human insulin for type 2 diabetes: an effective, less-expensive option.
        JAMA. 2017; 318: 23-24
        • Arnolds S.
        • Heise T.
        • Flacke F.
        • Sieber J.
        Common standards of basal insulin titration in type 2 diabetes.
        J Diabetes Sci Technol. 2013; 7: 771-788
        • Owens D.R.
        • Luzio S.D.
        • Sert-Langeron C.
        • Riddle M.C.
        Effects of initiation and titration of a single pre-prandial dose of insulin glulisine while continuing titrated insulin glargine in type 2 diabetes: a 6-month ‘proof-of-concept’ study.
        Diabetes Obes Metab. 2011; 13: 1020-1027
        • Orals Plus Apidra and Lantus (OPAL) Study Group
        Introducing a simplified approach to insulin therapy in type 2 diabetes: a comparison of two single-dose regimens of insulin glulisine plus insulin glargine and oral antidiabetic drugs.
        Diabetes Obes Metab. 2008; 10: 1178-1185
        • Leahy J.L.
        Insulin therapy in type 2 diabetes mellitus.
        Endocrinol Metab Clin North Am. 2012; 41: 119-144
        • Peyrot M.
        • Rubin R.R.
        • Polonsky W.H.
        • Best J.H.
        Patient reported outcomes in adults with type 2 diabetes on basal insulin randomized to addition of mealtime pramlintide or rapid-acting insulin analogs.
        Curr Med Res Opin. 2010; 26: 1047-1054
        • Wright A.
        • Burden A.C.
        • Paisey R.B.
        • Cull C.A.
        • Holman R.R.
        Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the U.K. Prospective Diabetes Study (UKPDS 57).
        Diabetes Care. 2002; 25: 330-336
        • UK Hypoglycaemia Study Group
        Risk of hypoglycaemia in types 1 and 2 diabetes: effects of treatment modalities and their duration.
        Diabetologia. 2007; 50: 1140-1147
        • DeWitt D.E.
        • Hirsch I.B.
        Outpatient insulin therapy in type 1 and type 2 diabetes mellitus: scientific review.
        JAMA. 2003; 289: 2254-2264
        • Moghissi E.
        • Ismail-Beigi F.
        • Devine R.C.
        Hypoglycemia: minimizing its impact in type 2 diabetes.
        Endocr Pract. 2013; 19: 526-535
        • Gehlaut R.R.
        • Dogbey G.Y.
        • Schwartz F.L.
        • Marling C.R.
        • Shubrook J.H.
        Hypoglycemia in type 2 diabetes—more common than you think: a continuous glucose monitoring study.
        J Diabetes Sci Technol. 2015; 9: 999-1005
        • Zoungas S.
        • Patel A.
        • Chalmers J.
        • et al.
        Severe hypoglycemia and risks of vascular events and death.
        N Engl J Med. 2010; 363: 1410-1418
        • Cryer P.E.
        Death during intensive glycemic therapy of diabetes: mechanisms and implications.
        Am J Med. 2011; 124: 993-996
        • McGill J.B.
        • Ahmann A.
        Continuous glucose monitoring with multiple daily insulin treatment: outcome studies.
        Diabetes Technol Ther. 2017; 19: S3-S12
        • Bailey T.S.
        • Grunberger G.
        • Bode B.W.
        • et al.
        American Association of Clinical Endocrinologists and American College of Endocrinology 2016 outpatient glucose monitoring consensus statement.
        Endocr Pract. 2016; 22: 231-261
        • Grunberger G.
        • Bailey T.
        • Camacho P.M.
        • et al.
        Proceedings from the American Association of Clinical Endocrinologists and American College of Endocrinology consensus conference on glucose monitoring.
        Endocr Pract. 2015; 21: 522-533

      Linked Article

      • CORRECTION
        Endocrine Practice Vol. 25Issue 2
        • Preview
          Correction to Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm – 2019 Executive Summary
        • Full-Text
        • PDF